mmpretrain/tools/dataset_converters/convert_imagenet_subsets.py

49 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
"""SimCLR provides list files for semi-supervised benchmarks
https://github.com/google-research/simclr/tree/master/imagenet_subsets/"""
import argparse
def parse_args():
parser = argparse.ArgumentParser(
description='Convert ImageNet subset lists provided by SimCLR into '
'the required format in MMPretrain.')
parser.add_argument(
'input', help='Input list file, downloaded from SimCLR github repo.')
parser.add_argument(
'output', help='Output list file with the required format.')
args = parser.parse_args()
return args
def main():
args = parse_args()
# create dict with full imagenet annotation file
with open('data/imagenet/meta/train.txt', 'r') as f:
lines = f.readlines()
keys = [line.split('/')[0] for line in lines]
labels = [line.strip().split()[1] for line in lines]
mapping = {}
for k, l in zip(keys, labels):
if k not in mapping:
mapping[k] = l
else:
assert mapping[k] == l
# convert
with open(args.input, 'r') as f:
lines = f.readlines()
fns = [line.strip() for line in lines]
sample_keys = [line.split('_')[0] for line in lines]
sample_labels = [mapping[k] for k in sample_keys]
output_lines = [
f'{k}/{fn} {l}\n' for k, fn, l in zip(sample_keys, fns, sample_labels)
]
with open(args.output, 'w+') as f:
f.writelines(output_lines)
if __name__ == '__main__':
main()