mmpretrain/configs/_base_/datasets/cifar100_bs16.py
Ma Zerun 13ff394985
Bump version to v1.0.0rc3. (#1211)
* Bump version to v1.0.0rc3

* Update pre-commit hook
2022-11-21 18:21:48 +08:00

46 lines
1.1 KiB
Python

# dataset settings
dataset_type = 'CIFAR100'
data_preprocessor = dict(
num_classes=100,
# RGB format normalization parameters
mean=[129.304, 124.070, 112.434],
std=[68.170, 65.392, 70.418],
# loaded images are already RGB format
to_rgb=False)
train_pipeline = [
dict(type='RandomCrop', crop_size=32, padding=4),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs'),
]
test_pipeline = [
dict(type='PackClsInputs'),
]
train_dataloader = dict(
batch_size=16,
num_workers=2,
dataset=dict(
type=dataset_type,
data_prefix='data/cifar100',
test_mode=False,
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=16,
num_workers=2,
dataset=dict(
type=dataset_type,
data_prefix='data/cifar100/',
test_mode=True,
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, ))
test_dataloader = val_dataloader
test_evaluator = val_evaluator