mmpretrain/mmcls/models/utils/mixup.py

51 lines
1.3 KiB
Python

from abc import ABCMeta, abstractmethod
import torch
import torch.nn.functional as F
from torch.distributions.beta import Beta
class BaseMixupLayer(object, metaclass=ABCMeta):
"""Base class for MixupLayer."""
def __init__(self):
super(BaseMixupLayer, self).__init__()
@abstractmethod
def mixup(self, imgs, gt_label):
pass
class BatchMixupLayer(BaseMixupLayer):
"""Mixup layer for batch mixup.
Args:
alpha (float): Parameters for Beta distribution.
num_classes (int): The number of classes.
"""
def __init__(self, alpha, num_classes):
super(BatchMixupLayer, self).__init__()
assert isinstance(alpha, float)
assert isinstance(num_classes, int)
self.alpha = alpha
self.num_classes = num_classes
self.Beta = Beta(self.alpha, self.alpha)
def mixup(self, img, gt_label):
lam = self.Beta.sample()
batch_size = img.size(0)
index = torch.randperm(batch_size)
one_hot_gt_label = F.one_hot(gt_label, num_classes=self.num_classes)
mixed_img = lam * img + (1 - lam) * img[index, :]
mixed_gt_label = lam * one_hot_gt_label + (
1 - lam) * one_hot_gt_label[index, :]
return mixed_img, mixed_gt_label
def __call__(self, img, gt_label):
return self.mixup(img, gt_label)