46 lines
1.4 KiB
Python
46 lines
1.4 KiB
Python
from mmcls.models.losses import Accuracy
|
|
from ..builder import HEADS, build_loss
|
|
from .base_head import BaseHead
|
|
|
|
|
|
@HEADS.register_module()
|
|
class ClsHead(BaseHead):
|
|
"""classification head.
|
|
|
|
Args:
|
|
loss (dict): Config of classification loss.
|
|
topk (int | tuple): Top-k accuracy.
|
|
""" # noqa: W605
|
|
|
|
def __init__(self,
|
|
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
|
topk=(1, )):
|
|
super(ClsHead, self).__init__()
|
|
|
|
assert isinstance(loss, dict)
|
|
assert isinstance(topk, (int, tuple))
|
|
if isinstance(topk, int):
|
|
topk = (topk, )
|
|
for _topk in topk:
|
|
assert _topk > 0, 'Top-k should be larger than 0'
|
|
self.topk = topk
|
|
|
|
self.compute_loss = build_loss(loss)
|
|
self.compute_accuracy = Accuracy(topk=self.topk)
|
|
|
|
def loss(self, cls_score, gt_label):
|
|
num_samples = len(cls_score)
|
|
losses = dict()
|
|
# compute loss
|
|
loss = self.compute_loss(cls_score, gt_label, avg_factor=num_samples)
|
|
# compute accuracy
|
|
acc = self.compute_accuracy(cls_score, gt_label)
|
|
assert len(acc) == len(self.topk)
|
|
losses['loss'] = loss
|
|
losses['accuracy'] = {f'top-{k}': a for k, a in zip(self.topk, acc)}
|
|
return losses
|
|
|
|
def forward_train(self, cls_score, gt_label):
|
|
losses = self.loss(cls_score, gt_label)
|
|
return losses
|