mmpretrain/tests/test_metrics/test_utils.py

50 lines
1.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcls.models.losses.utils import convert_to_one_hot
def ori_convert_to_one_hot(targets: torch.Tensor, classes) -> torch.Tensor:
assert (torch.max(targets).item() <
classes), 'Class Index must be less than number of classes'
one_hot_targets = torch.zeros((targets.shape[0], classes),
dtype=torch.long,
device=targets.device)
one_hot_targets.scatter_(1, targets.long(), 1)
return one_hot_targets
def test_convert_to_one_hot():
# label should smaller than classes
targets = torch.tensor([1, 2, 3, 8, 5])
classes = 5
with pytest.raises(AssertionError):
_ = convert_to_one_hot(targets, classes)
# test with original impl
classes = 10
targets = torch.randint(high=classes, size=(10, 1))
ori_one_hot_targets = torch.zeros((targets.shape[0], classes),
dtype=torch.long,
device=targets.device)
ori_one_hot_targets.scatter_(1, targets.long(), 1)
one_hot_targets = convert_to_one_hot(targets, classes)
assert torch.equal(ori_one_hot_targets, one_hot_targets)
# test cuda version
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
def test_convert_to_one_hot_cuda():
# test with original impl
classes = 10
targets = torch.randint(high=classes, size=(10, 1)).cuda()
ori_one_hot_targets = torch.zeros((targets.shape[0], classes),
dtype=torch.long,
device=targets.device)
ori_one_hot_targets.scatter_(1, targets.long(), 1)
one_hot_targets = convert_to_one_hot(targets, classes)
assert torch.equal(ori_one_hot_targets, one_hot_targets)
assert ori_one_hot_targets.device == one_hot_targets.device