41 lines
1.0 KiB
Python
41 lines
1.0 KiB
Python
_base_ = [
|
|
'../_base_/datasets/imagenet_bs32_mocov2.py',
|
|
'../_base_/schedules/imagenet_sgd_coslr_200e.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='DenseCL',
|
|
queue_len=65536,
|
|
feat_dim=128,
|
|
momentum=0.999,
|
|
loss_lambda=0.5,
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
in_channels=3,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN')),
|
|
neck=dict(
|
|
type='DenseCLNeck',
|
|
in_channels=2048,
|
|
hid_channels=2048,
|
|
out_channels=128,
|
|
num_grid=None),
|
|
head=dict(
|
|
type='ContrastiveHead',
|
|
loss=dict(type='CrossEntropyLoss'),
|
|
temperature=0.2),
|
|
)
|
|
find_unused_parameters = True
|
|
|
|
# runtime settings
|
|
default_hooks = dict(
|
|
# only keeps the latest 3 checkpoints
|
|
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
|
|
|
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
|
# based on the actual training batch size.
|
|
auto_scale_lr = dict(base_batch_size=256)
|