mmpretrain/configs/mixmim/mixmim_mixmim-base_16xb128-...

98 lines
2.5 KiB
Python

_base_ = '../_base_/default_runtime.py'
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))
# model settings
model = dict(
type='MixMIM',
data_preprocessor=dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
backbone=dict(
type='MixMIMTransformerPretrain',
arch='B',
drop_rate=0.0,
drop_path_rate=0.0, # drop_path_rate=0.0 during pretraining
),
neck=dict(
type='MixMIMPretrainDecoder',
num_patches=49,
encoder_stride=32,
embed_dim=1024,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16),
head=dict(
type='MixMIMPretrainHead',
norm_pix=True,
loss=dict(type='PixelReconstructionLoss', criterion='L2')))
# optimizer wrapper
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW',
lr=1.5e-4 * (2048 / 256),
betas=(0.9, 0.95),
weight_decay=0.05),
paramwise_cfg=dict(custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0)
}))
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=260,
by_epoch=True,
begin=40,
end=300,
convert_to_iter_based=True)
]
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=1))
randomness = dict(seed=0, diff_rank_seed=True)
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)