mmpretrain/configs/repvgg
Ma Zerun 7977dc8e2d
[Improvement] Rename config files according to the config name standard. (#508)
* Update tnt config

* Rename config files

* Update docs

* Update metafile in dev_scripts

* Fix some files

* Remove fp16 metafile and README.

* Fix names in metafiles.
2021-11-19 14:20:35 +08:00
..
deploy [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
README.md [Docs] Add model-pages in Model Zoo (#480) 2021-10-14 15:26:47 +08:00
metafile.yml [Improvement] Rename config files according to the config name standard. (#508) 2021-11-19 14:20:35 +08:00
repvgg-A0_4xb64-coslr-120e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-A1_4xb64-coslr-120e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-A2_4xb64-coslr-120e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-B0_4xb64-coslr-120e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-B1_4xb64-coslr-120e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-B1g2_4xb64-coslr-120e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-B1g4_4xb64-coslr-120e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-B2_4xb64-coslr-120e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00
repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py [Feature] Add RepVGG backbone and checkpoints. (#414) 2021-09-29 11:06:23 +08:00

README.md

Repvgg: Making vgg-style convnets great again

Introduction

@inproceedings{ding2021repvgg,
  title={Repvgg: Making vgg-style convnets great again},
  author={Ding, Xiaohan and Zhang, Xiangyu and Ma, Ningning and Han, Jungong and Ding, Guiguang and Sun, Jian},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13733--13742},
  year={2021}
}

Pretrain model

Model Epochs Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
RepVGG-A0* 120 9.11train) | 8.31 (deploy) 1.52 (train) | 1.36 (deploy) 72.41 90.50 config (train) | config (deploy) model
RepVGG-A1* 120 14.09 (train) | 12.79 (deploy) 2.64 (train) | 2.37 (deploy) 74.47 91.85 config (train) | config (deploy) model
RepVGG-A2* 120 28.21 (train) | 25.5 (deploy) 5.7 (train) | 5.12 (deploy) 76.48 93.01 config (train) |config (deploy) model
RepVGG-B0* 120 15.82 (train) | 14.34 (deploy) 3.42 (train) | 3.06 (deploy) 75.14 92.42 config (train) |config (deploy) model
RepVGG-B1* 120 57.42 (train) | 51.83 (deploy) 13.16 (train) | 11.82 (deploy) 78.37 94.11 config (train) |config (deploy) model
RepVGG-B1g2* 120 45.78 (train) | 41.36 (deploy) 9.82 (train) | 8.82 (deploy) 77.79 93.88 config (train) |config (deploy) model
RepVGG-B1g4* 120 39.97 (train) | 36.13 (deploy) 8.15 (train) | 7.32 (deploy) 77.58 93.84 config (train) |config (deploy) model
RepVGG-B2* 120 89.02 (train) | 80.32 (deploy) 20.46 (train) | 18.39 (deploy) 78.78 94.42 config (train) |config (deploy) model
RepVGG-B2g4* 200 61.76 (train) | 55.78 (deploy) 12.63 (train) | 11.34 (deploy) 79.38 94.68 config (train) |config (deploy) model
RepVGG-B3* 200 123.09 (train) | 110.96 (deploy) 29.17 (train) | 26.22 (deploy) 80.52 95.26 config (train) |config (deploy) model
RepVGG-B3g4* 200 83.83 (train) | 75.63 (deploy) 17.9 (train) | 16.08 (deploy) 80.22 95.10 config (train) |config (deploy) model
RepVGG-D2se* 200 133.33 (train) | 120.39 (deploy) 36.56 (train) | 32.85 (deploy) 81.81 95.94 config (train) |config (deploy) model

Models with * are converted from other repos.

Reparameterize RepVGG

The checkpoints provided are all in train form. Use the reparameterize tool to switch them to more efficient deploy form, which not only has fewer parameters but also less calculations.

python ./tools/convert_models/reparameterize_repvgg.py ${CFG_PATH} ${SRC_CKPT_PATH} ${TARGET_CKPT_PATH}

${CFG_PATH} is the config file, ${SRC_CKPT_PATH} is the source chenpoint file, ${TARGET_CKPT_PATH} is the target deploy weight file path.

To use reparameterized repvgg weight, the config file must switch to the deploy config files as below:

python ./tools/test.py ${RapVGG_Deploy_CFG} ${CHECK_POINT}