mmpretrain/configs/_base_/models/resnet50_cifar_mixup.py

18 lines
524 B
Python

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet_CIFAR',
depth=50,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='MultiLabelLinearClsHead',
num_classes=10,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0, use_soft=True)),
train_cfg=dict(
augments=dict(type='BatchMixup', alpha=1., num_classes=10, prob=1.)))