40 lines
1.2 KiB
Python
40 lines
1.2 KiB
Python
_base_ = [
|
|
'../_base_/models/efficientnet_b2.py',
|
|
'../_base_/datasets/imagenet_bs32.py',
|
|
'../_base_/schedules/imagenet_bs256.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# dataset settings
|
|
dataset_type = 'ImageNet'
|
|
img_norm_cfg = dict(
|
|
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='RandomResizedCrop',
|
|
size=260,
|
|
efficientnet_style=True,
|
|
interpolation='bicubic'),
|
|
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='ToTensor', keys=['gt_label']),
|
|
dict(type='Collect', keys=['img', 'gt_label'])
|
|
]
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='CenterCrop',
|
|
crop_size=260,
|
|
efficientnet_style=True,
|
|
interpolation='bicubic'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img'])
|
|
]
|
|
data = dict(
|
|
train=dict(pipeline=train_pipeline),
|
|
val=dict(pipeline=test_pipeline),
|
|
test=dict(pipeline=test_pipeline))
|