mmpretrain/configs/_base_/models/vig/vig_tiny.py

34 lines
848 B
Python

model = dict(
type='ImageClassifier',
backbone=dict(
type='Vig',
arch='tiny',
k=9,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='BN'),
graph_conv_type='mr',
graph_conv_bias=True,
epsilon=0.2,
use_dilation=True,
use_stochastic=False,
drop_path=0.1,
relative_pos=False,
norm_eval=False,
frozen_stages=0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='VigClsHead',
num_classes=1000,
in_channels=192,
hidden_dim=1024,
act_cfg=dict(type='GELU'),
dropout=0.,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)