* remove basehead * add moco series * add byol simclr simsiam * add ut * update configs * add simsiam hook * add and refactor beit * update ut * add cae * update extract_feat * refactor cae * add mae * refactor data preprocessor * update heads * add maskfeat * add milan * add simmim * add mixmim * fix lint * fix ut * fix lint * add eva * add densecl * add barlowtwins * add swav * fix lint * update readtherdocs rst * update docs * update * Decrease UT memory usage * Fix docstring * update DALLEEncoder * Update model docs * refactor dalle encoder * update docstring * fix ut * fix config error * add val_cfg and test_cfg * refactor clip generator * fix lint * pass check * fix ut * add lars * update type of BEiT in configs * Use MMEngine style momentum in EMA. * apply mmpretrain solarize --------- Co-authored-by: mzr1996 <mzr1996@163.com> |
||
---|---|---|
.. | ||
benchmarks | ||
README.md | ||
byol_resnet50_16xb256-coslr-200e_in1k.py | ||
metafile.yml |
README.md
BYOL
Bootstrap your own latent: A new approach to self-supervised Learning
Abstract
Bootstrap Your Own Latent (BYOL) is a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network.

How to use it?
Predict image
from mmpretrain import inference_model
predict = inference_model('resnet50_byol-pre_8xb512-linear-coslr-90e_in1k', 'demo/bird.JPEG')
print(predict['pred_class'])
print(predict['pred_score'])
Use the model
import torch
from mmpretrain import get_model
model = get_model('byol_resnet50_16xb256-coslr-200e_in1k', pretrained=True)
inputs = torch.rand(1, 3, 224, 224)
out = model(inputs)
print(type(out))
# To extract features.
feats = model.extract_feat(inputs)
print(type(feats))
Train/Test Command
Prepare your dataset according to the docs.
Train:
python tools/train.py configs/byol/byol_resnet50_16xb256-coslr-200e_in1k.py
Test:
python tools/test.py configs/byol/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-7596c6f5.pth
Models and results
Pretrained models
Model | Params (M) | Flops (G) | Config | Download |
---|---|---|---|---|
byol_resnet50_16xb256-coslr-200e_in1k |
N/A | N/A | config | model | log |
Image Classification on ImageNet-1k
Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|---|
resnet50_byol-pre_8xb512-linear-coslr-90e_in1k |
BYOL | N/A | N/A | 71.80 | config | model | log |
Citation
@inproceedings{grill2020bootstrap,
title={Bootstrap your own latent: A new approach to self-supervised learning},
author={Grill, Jean-Bastien and Strub, Florian and Altch{\'e}, Florent and Tallec, Corentin and Richemond, Pierre H and Buchatskaya, Elena and Doersch, Carl and Pires, Bernardo Avila and Guo, Zhaohan Daniel and Azar, Mohammad Gheshlaghi and others},
booktitle={NeurIPS},
year={2020}
}