mmpretrain/configs/mocov3/mocov3_vit-small-p16_16xb25...

152 lines
3.8 KiB
Python

_base_ = [
'../_base_/datasets/imagenet_bs512_mocov3.py',
'../_base_/default_runtime.py',
]
# dataset settings
# the difference between ResNet50 and ViT pipeline is the `scale` in
# `RandomResizedCrop`, `scale=(0.08, 1.)` in ViT pipeline
view_pipeline1 = [
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.08, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=1.),
dict(type='Solarize', thr=128, prob=0.),
dict(type='RandomFlip', prob=0.5),
]
view_pipeline2 = [
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.08, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.1),
dict(type='Solarize', thr=128, prob=0.2),
dict(type='RandomFlip', prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiView',
num_views=[1, 1],
transforms=[view_pipeline1, view_pipeline2]),
dict(type='PackInputs')
]
train_dataloader = dict(batch_size=256, dataset=dict(pipeline=train_pipeline))
# model settings
temperature = 0.2
model = dict(
type='MoCoV3',
base_momentum=0.01,
backbone=dict(
type='MoCoV3ViT',
arch='mocov3-small', # embed_dim = 384
img_size=224,
patch_size=16,
stop_grad_conv1=True),
neck=dict(
type='NonLinearNeck',
in_channels=384,
hid_channels=4096,
out_channels=256,
num_layers=3,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False),
head=dict(
type='MoCoV3Head',
predictor=dict(
type='NonLinearNeck',
in_channels=256,
hid_channels=4096,
out_channels=256,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False),
loss=dict(type='CrossEntropyLoss', loss_weight=2 * temperature),
temperature=temperature))
# optimizer
optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
optimizer=dict(type='AdamW', lr=2.4e-3, weight_decay=0.1))
find_unused_parameters = True
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=260,
by_epoch=True,
begin=40,
end=300,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
# only keeps the latest 3 checkpoints
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=4096)