* remove basehead * add moco series * add byol simclr simsiam * add ut * update configs * add simsiam hook * add and refactor beit * update ut * add cae * update extract_feat * refactor cae * add mae * refactor data preprocessor * update heads * add maskfeat * add milan * add simmim * add mixmim * fix lint * fix ut * fix lint * add eva * add densecl * add barlowtwins * add swav * fix lint * update readtherdocs rst * update docs * update * Decrease UT memory usage * Fix docstring * update DALLEEncoder * Update model docs * refactor dalle encoder * update docstring * fix ut * fix config error * add val_cfg and test_cfg * refactor clip generator * fix lint * pass check * fix ut * add lars * update type of BEiT in configs * Use MMEngine style momentum in EMA. * apply mmpretrain solarize --------- Co-authored-by: mzr1996 <mzr1996@163.com> |
||
---|---|---|
.. | ||
benchmarks | ||
README.md | ||
metafile.yml | ||
simclr_resnet50_8xb32-coslr-200e_in1k.py | ||
simclr_resnet50_16xb256-coslr-200e_in1k.py | ||
simclr_resnet50_16xb256-coslr-800e_in1k.py |
README.md
SimCLR
A simple framework for contrastive learning of visual representations
Abstract
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50.

How to use it?
Predict image
from mmpretrain import inference_model
predict = inference_model('resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k', 'demo/bird.JPEG')
print(predict['pred_class'])
print(predict['pred_score'])
Use the model
import torch
from mmpretrain import get_model
model = get_model('simclr_resnet50_16xb256-coslr-200e_in1k', pretrained=True)
inputs = torch.rand(1, 3, 224, 224)
out = model(inputs)
print(type(out))
# To extract features.
feats = model.extract_feat(inputs)
print(type(feats))
Train/Test Command
Prepare your dataset according to the docs.
Train:
python tools/train.py configs/simclr/simclr_resnet50_16xb256-coslr-200e_in1k.py
Test:
python tools/test.py configs/simclr/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f12c0457.pth
Models and results
Pretrained models
Model | Params (M) | Flops (G) | Config | Download |
---|---|---|---|---|
simclr_resnet50_16xb256-coslr-200e_in1k |
N/A | N/A | config | model | log |
simclr_resnet50_16xb256-coslr-800e_in1k |
N/A | N/A | config | model | log |
Image Classification on ImageNet-1k
Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|---|
resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k |
SIMCLR 200-Epochs | N/A | N/A | 66.90 | config | model | log |
resnet50_simclr-800e-pre_8xb512-linear-coslr-90e_in1k |
SIMCLR 800-Epochs | N/A | N/A | 69.20 | config | model | log |
Citation
@inproceedings{chen2020simple,
title={A simple framework for contrastive learning of visual representations},
author={Chen, Ting and Kornblith, Simon and Norouzi, Mohammad and Hinton, Geoffrey},
booktitle={ICML},
year={2020},
}