mmpretrain/tests/test_models/test_backbones/test_deit.py

112 lines
4.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import math
import os
import tempfile
from copy import deepcopy
from unittest import TestCase
import torch
from mmengine.runner import load_checkpoint, save_checkpoint
from mmpretrain.models.backbones import DistilledVisionTransformer
from .utils import timm_resize_pos_embed
class TestDeiT(TestCase):
def setUp(self):
self.cfg = dict(
arch='deit-tiny', img_size=224, patch_size=16, drop_rate=0.1)
def test_init_weights(self):
# test weight init cfg
cfg = deepcopy(self.cfg)
cfg['init_cfg'] = [
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]
model = DistilledVisionTransformer(**cfg)
ori_weight = model.patch_embed.projection.weight.clone().detach()
# The pos_embed is all zero before initialize
self.assertTrue(torch.allclose(model.dist_token, torch.tensor(0.)))
model.init_weights()
initialized_weight = model.patch_embed.projection.weight
self.assertFalse(torch.allclose(ori_weight, initialized_weight))
self.assertFalse(torch.allclose(model.dist_token, torch.tensor(0.)))
# test load checkpoint
pretrain_pos_embed = model.pos_embed.clone().detach()
tmpdir = tempfile.gettempdir()
checkpoint = os.path.join(tmpdir, 'test.pth')
save_checkpoint(model.state_dict(), checkpoint)
cfg = deepcopy(self.cfg)
model = DistilledVisionTransformer(**cfg)
load_checkpoint(model, checkpoint, strict=True)
self.assertTrue(torch.allclose(model.pos_embed, pretrain_pos_embed))
# test load checkpoint with different img_size
cfg = deepcopy(self.cfg)
cfg['img_size'] = 384
model = DistilledVisionTransformer(**cfg)
load_checkpoint(model, checkpoint, strict=True)
resized_pos_embed = timm_resize_pos_embed(
pretrain_pos_embed, model.pos_embed, num_tokens=2)
self.assertTrue(torch.allclose(model.pos_embed, resized_pos_embed))
os.remove(checkpoint)
def test_forward(self):
imgs = torch.randn(1, 3, 224, 224)
# test with output cls_token
cfg = deepcopy(self.cfg)
model = DistilledVisionTransformer(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
cls_token, dist_token = outs[-1]
self.assertEqual(cls_token.shape, (1, 192))
self.assertEqual(dist_token.shape, (1, 192))
# test without output cls_token
cfg = deepcopy(self.cfg)
cfg['out_type'] = 'featmap'
model = DistilledVisionTransformer(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
patch_token = outs[-1]
self.assertEqual(patch_token.shape, (1, 192, 14, 14))
# Test forward with multi out indices
cfg = deepcopy(self.cfg)
cfg['out_indices'] = [-3, -2, -1]
model = DistilledVisionTransformer(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 3)
for out in outs:
cls_token, dist_token = out
self.assertEqual(cls_token.shape, (1, 192))
self.assertEqual(dist_token.shape, (1, 192))
# Test forward with dynamic input size
imgs1 = torch.randn(1, 3, 224, 224)
imgs2 = torch.randn(1, 3, 256, 256)
imgs3 = torch.randn(1, 3, 256, 309)
cfg = deepcopy(self.cfg)
cfg['out_type'] = 'featmap'
model = DistilledVisionTransformer(**cfg)
for imgs in [imgs1, imgs2, imgs3]:
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
featmap = outs[-1]
expect_feat_shape = (math.ceil(imgs.shape[2] / 16),
math.ceil(imgs.shape[3] / 16))
self.assertEqual(featmap.shape, (1, 192, *expect_feat_shape))