mmpretrain/tests/test_models/test_selfsup/test_densecl.py

63 lines
1.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmpretrain.models import DenseCL
from mmpretrain.structures import DataSample
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_densecl():
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'to_rgb': True
}
queue_len = 32
feat_dim = 2
momentum = 0.001
loss_lambda = 0.5
backbone = dict(type='ResNet', depth=18, norm_cfg=dict(type='BN'))
neck = dict(
type='DenseCLNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
num_grid=None)
head = dict(
type='ContrastiveHead',
loss=dict(type='CrossEntropyLoss'),
temperature=0.2)
alg = DenseCL(
backbone=backbone,
neck=neck,
head=head,
queue_len=queue_len,
feat_dim=feat_dim,
momentum=momentum,
loss_lambda=loss_lambda,
data_preprocessor=data_preprocessor)
# test init
assert alg.queue.size() == torch.Size([feat_dim, queue_len])
assert alg.queue2.size() == torch.Size([feat_dim, queue_len])
# test loss
fake_data = {
'inputs':
[torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 224, 224))],
'data_samples': [DataSample() for _ in range(2)]
}
fake_inputs = alg.data_preprocessor(fake_data)
fake_loss = alg(**fake_inputs, mode='loss')
assert isinstance(fake_loss['loss_single'].item(), float)
assert isinstance(fake_loss['loss_dense'].item(), float)
assert fake_loss['loss_single'].item() > 0
assert fake_loss['loss_dense'].item() > 0
assert alg.queue_ptr.item() == 2
assert alg.queue2_ptr.item() == 2