mmpretrain/tests/test_models/test_selfsup/test_milan.py

70 lines
2.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
from unittest.mock import MagicMock
import pytest
import torch
from mmpretrain.models import MILAN, MILANViT
from mmpretrain.structures import DataSample
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_milan_vit():
backbone = dict(arch='b', patch_size=16, mask_ratio=0.75)
milan_backbone = MILANViT(**backbone)
milan_backbone.init_weights()
fake_inputs = torch.randn((2, 3, 224, 224))
# test with mask
fake_outputs = milan_backbone(fake_inputs,
torch.ones(2, 197, 197)[:, 0, 1:])[0]
assert list(fake_outputs.shape) == [2, 50, 768]
# test without mask
fake_outputs = milan_backbone(fake_inputs, None)
assert fake_outputs[0].shape == torch.Size([2, 768])
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_milan():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
backbone = dict(type='MILANViT', arch='b', patch_size=16, mask_ratio=0.75)
neck = dict(
type='MILANPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.)
head = dict(
type='MIMHead',
loss=dict(
type='CosineSimilarityLoss', shift_factor=2.0, scale_factor=2.0))
alg = MILAN(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
target_generator = MagicMock(
return_value=(torch.ones(2, 197, 512), torch.ones(2, 197, 197)))
alg.target_generator = target_generator
fake_data = {
'inputs': torch.randn((2, 3, 224, 224)),
'data_samples': [DataSample() for _ in range(2)]
}
fake_inputs = alg.data_preprocessor(fake_data)
fake_outputs = alg(**fake_inputs, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)