mmpretrain/tests/test_models/test_selfsup/test_simclr.py

53 lines
1.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmpretrain.models import SimCLR
from mmpretrain.structures import DataSample
backbone = dict(type='ResNet', depth=18, norm_cfg=dict(type='BN'))
neck = dict(
type='NonLinearNeck', # SimCLR non-linear neck
in_channels=512,
hid_channels=2,
out_channels=2,
num_layers=2,
with_avg_pool=True,
norm_cfg=dict(type='BN1d'))
head = dict(
type='ContrastiveHead',
loss=dict(type='CrossEntropyLoss'),
temperature=0.1)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simclr():
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'to_rgb': True,
}
alg = SimCLR(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=data_preprocessor)
fake_data = {
'inputs':
[torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 224, 224))],
'data_samples': [DataSample() for _ in range(2)]
}
fake_inputs = alg.data_preprocessor(fake_data)
fake_loss = alg(**fake_inputs, mode='loss')
assert isinstance(fake_loss['loss'].item(), float)
# test extract
fake_feat = alg(fake_inputs['inputs'][0], mode='tensor')
assert fake_feat[0].size() == torch.Size([2, 512, 7, 7])