Zhiliang Peng 18f6bb0b10
[Feature] Implement the conformer backbone. (#494)
* implement the conformer

* format code style

* format code style

* reuse the TransformerEncoderLayer in the vision_transformer.py

* Modify variable name

* delete unused params

* Remove warning info in Conformer head since it already exists in
Conformer.

* Rename some variables

* Add unit tests

* Use `getattr` instead of `get_submodule`.

* Remove some useless layers

* Refactor conformer and add configs

* Update configs and add metafile.

* Fix unit tests

* Update README

Co-authored-by: mzr1996 <mzr1996@163.com>
2021-12-07 14:00:17 +08:00

23 lines
752 B
Python

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='Conformer', arch='tiny', drop_path_rate=0.1, init_cfg=None),
neck=None,
head=dict(
type='ConformerHead',
num_classes=1000,
in_channels=[256, 384],
init_cfg=None,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))