57 lines
1.8 KiB
Python
57 lines
1.8 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import torch.nn as nn
|
|
|
|
from ..builder import BACKBONES
|
|
from .base_backbone import BaseBackbone
|
|
|
|
|
|
@BACKBONES.register_module()
|
|
class AlexNet(BaseBackbone):
|
|
"""`AlexNet <https://en.wikipedia.org/wiki/AlexNet>`_ backbone.
|
|
|
|
The input for AlexNet is a 224x224 RGB image.
|
|
|
|
Args:
|
|
num_classes (int): number of classes for classification.
|
|
The default value is -1, which uses the backbone as
|
|
a feature extractor without the top classifier.
|
|
"""
|
|
|
|
def __init__(self, num_classes=-1):
|
|
super(AlexNet, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.features = nn.Sequential(
|
|
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
nn.Conv2d(64, 192, kernel_size=5, padding=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
nn.Conv2d(192, 384, kernel_size=3, padding=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(384, 256, kernel_size=3, padding=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
)
|
|
if self.num_classes > 0:
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(),
|
|
nn.Linear(256 * 6 * 6, 4096),
|
|
nn.ReLU(inplace=True),
|
|
nn.Dropout(),
|
|
nn.Linear(4096, 4096),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(4096, num_classes),
|
|
)
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.features(x)
|
|
if self.num_classes > 0:
|
|
x = x.view(x.size(0), 256 * 6 * 6)
|
|
x = self.classifier(x)
|
|
|
|
return (x, )
|