mmpretrain/configs/convmixer/convmixer-1024-20_10xb64_in...

40 lines
988 B
Python

_base_ = [
'../_base_/models/convmixer/convmixer-1024-20.py',
'../_base_/datasets/imagenet_bs64_convmixer_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
# schedule setting
optim_wrapper = dict(
optimizer=dict(lr=0.01),
clip_grad=dict(max_norm=5.0),
)
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=1e-3,
by_epoch=True,
begin=0,
end=20,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=130,
eta_min=1e-5,
by_epoch=True,
begin=20,
end=150)
]
train_cfg = dict(by_epoch=True, max_epochs=150)
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (10 GPUs) x (64 samples per GPU)
auto_scale_lr = dict(base_batch_size=640)