mmpretrain/configs/convmixer/convmixer-768-32_10xb64_in1...

20 lines
568 B
Python

_base_ = [
'../_base_/models/convmixer/convmixer-768-32.py',
'../_base_/datasets/imagenet_bs64_convmixer_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
# schedule setting
optim_wrapper = dict(
optimizer=dict(lr=0.01),
clip_grad=dict(max_norm=5.0),
)
train_cfg = dict(by_epoch=True, max_epochs=300)
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (10 GPUs) x (64 samples per GPU)
auto_scale_lr = dict(base_batch_size=640)