45 lines
1.6 KiB
YAML
45 lines
1.6 KiB
YAML
Collections:
|
|
- Name: DenseCL
|
|
Metadata:
|
|
Training Data: ImageNet-1k
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Resources: 8x V100 GPUs
|
|
Architecture:
|
|
- ResNet
|
|
Paper:
|
|
Title: Dense contrastive learning for self-supervised visual pre-training
|
|
URL: https://arxiv.org/abs/2011.09157
|
|
README: configs/densecl/README.md
|
|
|
|
Models:
|
|
- Name: densecl_resnet50_8xb32-coslr-200e_in1k
|
|
Metadata:
|
|
Epochs: 200
|
|
Batch Size: 256
|
|
FLOPs: 4109364224
|
|
Parameters: 64850560
|
|
Training Data: ImageNet-1k
|
|
In Collection: DenseCL
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth
|
|
Config: configs/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py
|
|
Downstream:
|
|
- resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
|
|
- Name: resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 256
|
|
FLOPs: 4109464576
|
|
Parameters: 25557032
|
|
Training Data: ImageNet-1k
|
|
In Collection: DenseCL
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 63.5
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.pth
|
|
Config: configs/densecl/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py
|