51 lines
1.6 KiB
Python
51 lines
1.6 KiB
Python
import base64
|
|
import os
|
|
|
|
import mmcv
|
|
import torch
|
|
from ts.torch_handler.base_handler import BaseHandler
|
|
|
|
from mmcls.apis import inference_model, init_model
|
|
|
|
|
|
class MMclsHandler(BaseHandler):
|
|
|
|
def initialize(self, context):
|
|
properties = context.system_properties
|
|
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
self.device = torch.device(self.map_location + ':' +
|
|
str(properties.get('gpu_id')) if torch.cuda.
|
|
is_available() else self.map_location)
|
|
self.manifest = context.manifest
|
|
|
|
model_dir = properties.get('model_dir')
|
|
serialized_file = self.manifest['model']['serializedFile']
|
|
checkpoint = os.path.join(model_dir, serialized_file)
|
|
self.config_file = os.path.join(model_dir, 'config.py')
|
|
|
|
self.model = init_model(self.config_file, checkpoint, self.device)
|
|
self.initialized = True
|
|
|
|
def preprocess(self, data):
|
|
images = []
|
|
|
|
for row in data:
|
|
image = row.get('data') or row.get('body')
|
|
if isinstance(image, str):
|
|
image = base64.b64decode(image)
|
|
image = mmcv.imfrombytes(image)
|
|
images.append(image)
|
|
|
|
return images
|
|
|
|
def inference(self, data, *args, **kwargs):
|
|
results = []
|
|
for image in data:
|
|
results.append(inference_model(self.model, image))
|
|
return results
|
|
|
|
def postprocess(self, data):
|
|
for result in data:
|
|
result['pred_label'] = int(result['pred_label'])
|
|
return data
|