mmpretrain/tools/deployment/mmcls_handler.py

51 lines
1.6 KiB
Python

import base64
import os
import mmcv
import torch
from ts.torch_handler.base_handler import BaseHandler
from mmcls.apis import inference_model, init_model
class MMclsHandler(BaseHandler):
def initialize(self, context):
properties = context.system_properties
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = torch.device(self.map_location + ':' +
str(properties.get('gpu_id')) if torch.cuda.
is_available() else self.map_location)
self.manifest = context.manifest
model_dir = properties.get('model_dir')
serialized_file = self.manifest['model']['serializedFile']
checkpoint = os.path.join(model_dir, serialized_file)
self.config_file = os.path.join(model_dir, 'config.py')
self.model = init_model(self.config_file, checkpoint, self.device)
self.initialized = True
def preprocess(self, data):
images = []
for row in data:
image = row.get('data') or row.get('body')
if isinstance(image, str):
image = base64.b64decode(image)
image = mmcv.imfrombytes(image)
images.append(image)
return images
def inference(self, data, *args, **kwargs):
results = []
for image in data:
results.append(inference_model(self.model, image))
return results
def postprocess(self, data):
for result in data:
result['pred_label'] = int(result['pred_label'])
return data