11 KiB
Analysis Tools (TODO)
Log Analysis
Plot Curves
tools/analysis_tools/analyze_logs.py
plots curves of given keys according to the log files.

python tools/analysis_tools/analyze_logs.py plot_curve \
${JSON_LOGS} \
[--keys ${KEYS}] \
[--title ${TITLE}] \
[--legend ${LEGEND}] \
[--backend ${BACKEND}] \
[--style ${STYLE}] \
[--out ${OUT_FILE}] \
[--window-size ${WINDOW_SIZE}]
Description of all arguments:
json_logs
: The paths of the log files, separate multiple files by spaces.--keys
: The fields of the logs to analyze, separate multiple keys by spaces. Defaults to 'loss'.--title
: The title of the figure. Defaults to use the filename.--legend
: The names of legend, the number of which must be equal tolen(${JSON_LOGS}) * len(${KEYS})
. Defaults to use"${JSON_LOG}-${KEYS}"
.--backend
: The backend of matplotlib. Defaults to auto selected by matplotlib.--style
: The style of the figure. Default towhitegrid
.--out
: The path of the output picture. If not set, the figure won't be saved.--window-size
: The shape of the display window. The format should be'W*H'
. Defaults to'12*7'
.
The `--style` option depends on `seaborn` package, please install it before setting it.
Examples:
-
Plot the loss curve in training.
python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys loss --legend loss
-
Plot the top-1 accuracy and top-5 accuracy curves, and save the figure to results.jpg.
python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys accuracy_top-1 accuracy_top-5 --legend top1 top5 --out results.jpg
-
Compare the top-1 accuracy of two log files in the same figure.
python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys accuracy_top-1 --legend exp1 exp2
The tool will automatically select to find keys in training logs or validation logs according to the keys.
Therefore, if you add a custom evaluation metric, please also add the key to `TEST_METRICS` in this tool.
Calculate Training Time
tools/analysis_tools/analyze_logs.py
can also calculate the training time according to the log files.
python tools/analysis_tools/analyze_logs.py cal_train_time \
${JSON_LOGS}
[--include-outliers]
Description of all arguments:
json_logs
: The paths of the log files, separate multiple files by spaces.--include-outliers
: If set, include the first iteration in each epoch (Sometimes the time of first iterations is longer).
Example:
python tools/analysis_tools/analyze_logs.py cal_train_time work_dirs/some_exp/20200422_153324.log.json
The output is expected to be like the below.
-----Analyze train time of work_dirs/some_exp/20200422_153324.log.json-----
slowest epoch 68, average time is 0.3818
fastest epoch 1, average time is 0.3694
time std over epochs is 0.0020
average iter time: 0.3777 s/iter
Result Analysis
With the --out
argument in tools/test.py
, we can save the inference results of all samples as a file.
And with this result file, we can do further analysis.
Evaluate Results
tools/analysis_tools/eval_metric.py
can evaluate metrics again.
python tools/analysis_tools/eval_metric.py \
${CONFIG} \
${RESULT} \
[--metrics ${METRICS}] \
[--cfg-options ${CFG_OPTIONS}] \
[--metric-options ${METRIC_OPTIONS}]
Description of all arguments:
config
: The path of the model config file.result
: The Output result file in json/pickle format fromtools/test.py
.--metrics
: Evaluation metrics, the acceptable values depend on the dataset.--cfg-options
: If specified, the key-value pair config will be merged into the config file, for more details please refer to Learn about Configs--metric-options
: If specified, the key-value pair arguments will be passed to themetric_options
argument of dataset'sevaluate
function.
In `tools/test.py`, we support using `--out-items` option to select which kind of results will be saved. Please ensure the result file includes "class_scores" to use this tool.
Examples:
python tools/analysis_tools/eval_metric.py configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py your_result.pkl --metrics accuracy --metric-options "topk=(1,5)"
View Typical Results
tools/analysis_tools/analyze_results.py
can save the images with the highest scores in successful or failed prediction.
python tools/analysis_tools/analyze_results.py \
${CONFIG} \
${RESULT} \
[--out-dir ${OUT_DIR}] \
[--topk ${TOPK}] \
[--cfg-options ${CFG_OPTIONS}]
Description of all arguments:
config
: The path of the model config file.result
: Output result file in json/pickle format fromtools/test.py
.--out_dir
: Directory to store output files.--topk
: The number of images in successful or failed prediction with the highesttopk
scores to save. If not specified, it will be set to 20.--cfg-options
: If specified, the key-value pair config will be merged into the config file, for more details please refer to Learn about Configs
In `tools/test.py`, we support using `--out-items` option to select which kind of results will be saved. Please ensure the result file includes "pred_score", "pred_label" and "pred_class" to use this tool.
Examples:
python tools/analysis_tools/analyze_results.py \
configs/resnet/resnet50_b32x8_imagenet.py \
result.pkl \
--out_dir results \
--topk 50
Model Complexity
Get the FLOPs and params (experimental)
We provide a script adapted from fvcore to compute the FLOPs and params of a given model.
python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
Description of all arguments:
config
: The path of the model config file.--shape
: Input size, support single value or double value parameter, such as--shape 256
or--shape 224 256
. If not set, default to be224 224
.
You will get the final result like this.
==============================
Input shape: (3, 224, 224)
Flops: 17.582G
Params: 91.234M
Activation: 23.895M
==============================
Also, you will get the detailed complexity information of each layer like this:
| module | #parameters or shape | #flops | #activations |
|:------------------------------------------|:-----------------------|:----------|:---------------|
| model | 91.234M | 17.582G | 23.895M |
| backbone | 85.799M | 17.582G | 23.895M |
| backbone.cls_token | (1, 1, 768) | | |
| backbone.pos_embed | (1, 197, 768) | | |
| backbone.patch_embed.projection | 0.591M | 0.116G | 0.151M |
| backbone.patch_embed.projection.weight | (768, 3, 16, 16) | | |
| backbone.patch_embed.projection.bias | (768,) | | |
| backbone.layers | 85.054M | 17.466G | 23.744M |
| backbone.layers.0 | 7.088M | 1.455G | 1.979M |
| backbone.layers.1 | 7.088M | 1.455G | 1.979M |
| backbone.layers.2 | 7.088M | 1.455G | 1.979M |
| backbone.layers.3 | 7.088M | 1.455G | 1.979M |
| backbone.layers.4 | 7.088M | 1.455G | 1.979M |
| backbone.layers.5 | 7.088M | 1.455G | 1.979M |
| backbone.layers.6 | 7.088M | 1.455G | 1.979M |
| backbone.layers.7 | 7.088M | 1.455G | 1.979M |
| backbone.layers.8 | 7.088M | 1.455G | 1.979M |
| backbone.layers.9 | 7.088M | 1.455G | 1.979M |
| backbone.layers.10 | 7.088M | 1.455G | 1.979M |
| backbone.layers.11 | 7.088M | 1.455G | 1.979M |
| backbone.ln1 | 1.536K | 0.756M | 0 |
| backbone.ln1.weight | (768,) | | |
| backbone.ln1.bias | (768,) | | |
| head.layers | 5.435M | | |
| head.layers.pre_logits | 2.362M | | |
| head.layers.pre_logits.weight | (3072, 768) | | |
| head.layers.pre_logits.bias | (3072,) | | |
| head.layers.head | 3.073M | | |
| head.layers.head.weight | (1000, 3072) | | |
| head.layers.head.bias | (1000,) | | |
This tool is still experimental and we do not guarantee that the number is correct. You may well use the result for simple comparisons, but double-check it before you adopt it in technical reports or papers.
- FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 224, 224).
- Some operators are not counted into FLOPs like custom operators. Refer to [`fvcore.nn.flop_count._DEFAULT_SUPPORTED_OPS`](https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/flop_count.py) for details.
FAQs
- None