mmpretrain/tests/test_models/test_selfsup/test_mixmim.py

72 lines
2.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmpretrain.models import MixMIM, MixMIMPretrainTransformer
from mmpretrain.structures import DataSample
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_mixmmim_backbone():
mixmmim_backbone = MixMIMPretrainTransformer(
arch=dict(embed_dims=128, depths=[2, 2, 4, 2], num_heads=[4, 4, 4, 4]))
mixmmim_backbone.init_weights()
fake_inputs = torch.randn((1, 3, 224, 224))
# test with mask
fake_outputs, fake_mask_s4 = mixmmim_backbone(fake_inputs)
assert fake_outputs.shape == torch.Size([1, 49, 1024])
assert fake_mask_s4.shape == torch.Size([1, 49, 1])
# test without mask
fake_outputs = mixmmim_backbone(fake_inputs, None)
assert len(fake_outputs) == 1
assert fake_outputs[0].shape == torch.Size([1, 1024])
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simmim():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
# model config
backbone = dict(
type='MixMIMPretrainTransformer',
arch='B',
drop_rate=0.0,
drop_path_rate=0.0)
neck = dict(
type='MixMIMPretrainDecoder',
num_patches=49,
encoder_stride=32,
embed_dim=1024,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16)
head = dict(
type='MixMIMPretrainHead',
norm_pix=True,
loss=dict(type='PixelReconstructionLoss', criterion='L2'))
model = MixMIM(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=data_preprocessor)
# test forward_train
fake_data_sample = DataSample()
fake_data = {
'inputs': torch.randn((2, 3, 224, 224)),
'data_samples': [fake_data_sample for _ in range(2)]
}
fake_inputs = model.data_preprocessor(fake_data)
fake_outputs = model(**fake_inputs, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)