mmpretrain/tests/test_models/test_selfsup/test_mocov3.py

92 lines
2.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
from unittest import TestCase
import pytest
import torch
from mmpretrain.models import MoCoV3, MoCoV3ViT
from mmpretrain.structures import DataSample
class TestMoCoV3(TestCase):
backbone = dict(
type='MoCoV3ViT',
arch='mocov3-small', # embed_dim = 384
patch_size=16,
frozen_stages=12,
stop_grad_conv1=True,
norm_eval=True)
neck = dict(
type='NonLinearNeck',
in_channels=384,
hid_channels=2,
out_channels=2,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False,
norm_cfg=dict(type='BN1d'))
head = dict(
type='MoCoV3Head',
predictor=dict(
type='NonLinearNeck',
in_channels=2,
hid_channels=2,
out_channels=2,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False,
norm_cfg=dict(type='BN1d')),
loss=dict(type='CrossEntropyLoss', loss_weight=2 * 0.2),
temperature=0.2)
@pytest.mark.skipif(
platform.system() == 'Windows', reason='Windows mem limit')
def test_vit(self):
vit = MoCoV3ViT(
arch='mocov3-small',
patch_size=16,
frozen_stages=12,
stop_grad_conv1=True,
norm_eval=True)
vit.init_weights()
vit.train()
for p in vit.parameters():
assert p.requires_grad is False
@pytest.mark.skipif(
platform.system() == 'Windows', reason='Windows mem limit')
def test_mocov3(self):
data_preprocessor = dict(
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
to_rgb=True)
alg = MoCoV3(
backbone=self.backbone,
neck=self.neck,
head=self.head,
data_preprocessor=data_preprocessor)
fake_data = {
'inputs':
[torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 224, 224))],
'data_samples': [DataSample() for _ in range(2)]
}
fake_inputs = alg.data_preprocessor(fake_data)
fake_loss = alg(**fake_inputs, mode='loss')
self.assertGreater(fake_loss['loss'], 0)
# test extract
fake_feats = alg(fake_inputs['inputs'][0], mode='tensor')
self.assertEqual(fake_feats[0].size(), torch.Size([2, 384]))