mmpretrain/tools/model_converters/torchvision_to_mmpretrain.py

64 lines
1.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
def convert_resnet(src_dict, dst_dict):
"""convert resnet checkpoints from torchvision."""
for key, value in src_dict.items():
if not key.startswith('fc'):
dst_dict['backbone.' + key] = value
else:
dst_dict['head.' + key] = value
# model name to convert function
CONVERT_F_DICT = {
'resnet': convert_resnet,
}
def convert(src: str, dst: str, convert_f: callable):
print('Converting...')
blobs = torch.load(src, map_location='cpu')
converted_state_dict = OrderedDict()
# convert key in weight
convert_f(blobs, converted_state_dict)
torch.save(converted_state_dict, dst)
print('Done!')
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument('src', help='src detectron model path')
parser.add_argument('dst', help='save path')
parser.add_argument(
'model', type=str, help='The algorithm needs to change the keys.')
args = parser.parse_args()
dst = Path(args.dst)
if dst.suffix != '.pth':
print('The path should contain the name of the pth format file.')
exit(1)
dst.parent.mkdir(parents=True, exist_ok=True)
# this tool only support model in CONVERT_F_DICT
support_models = list(CONVERT_F_DICT.keys())
if args.model not in CONVERT_F_DICT:
print(f'The "{args.model}" has not been supported to convert now.')
print(f'This tool only supports {", ".join(support_models)}.')
print('If you have done the converting job, PR is welcome!')
exit(1)
convert_f = CONVERT_F_DICT[args.model]
convert(args.src, args.dst, convert_f)
if __name__ == '__main__':
main()