250 lines
7.8 KiB
Python
250 lines
7.8 KiB
Python
#!/usr/bin/env python
|
|
import re
|
|
import warnings
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
|
|
from modelindex.load_model_index import load
|
|
from modelindex.models.Result import Result
|
|
from tabulate import tabulate
|
|
|
|
MMPT_ROOT = Path(__file__).absolute().parents[2]
|
|
PAPERS_ROOT = Path('papers') # Path to save generated paper pages.
|
|
GITHUB_PREFIX = 'https://github.com/open-mmlab/mmpretrain/blob/main/'
|
|
MODELZOO_TEMPLATE = """\
|
|
# 模型库统计
|
|
|
|
在本页面中,我们列举了我们支持的[所有算法](#所有已支持的算法)。你可以点击链接跳转至对应的模型详情页面。
|
|
|
|
另外,我们还列出了我们提供的所有模型权重文件。你可以使用排序和搜索功能找到需要的模型权重,并使用链接跳转至模型详情页面。
|
|
|
|
## 所有已支持的算法
|
|
|
|
* 论文数量:{num_papers}
|
|
{type_msg}
|
|
|
|
* 模型权重文件数量:{num_ckpts}
|
|
{paper_msg}
|
|
|
|
""" # noqa: E501
|
|
|
|
METRIC_ALIAS = {
|
|
'Top 1 Accuracy': 'Top-1 (%)',
|
|
'Top 5 Accuracy': 'Top-5 (%)',
|
|
}
|
|
|
|
model_index = load(str(MMPT_ROOT / 'model-index.yml'))
|
|
|
|
|
|
def build_collections(model_index):
|
|
col_by_name = {}
|
|
for col in model_index.collections:
|
|
setattr(col, 'models', [])
|
|
col_by_name[col.name] = col
|
|
|
|
for model in model_index.models:
|
|
col = col_by_name[model.in_collection]
|
|
col.models.append(model)
|
|
setattr(model, 'collection', col)
|
|
if model.results is None:
|
|
setattr(model, 'tasks', [])
|
|
else:
|
|
setattr(model, 'tasks', [result.task for result in model.results])
|
|
|
|
|
|
build_collections(model_index)
|
|
|
|
|
|
def count_papers(collections):
|
|
total_num_ckpts = 0
|
|
type_count = defaultdict(int)
|
|
paper_msgs = []
|
|
|
|
for collection in collections:
|
|
with open(MMPT_ROOT / collection.readme) as f:
|
|
readme = f.read()
|
|
ckpts = set(x.lower().strip()
|
|
for x in re.findall(r'\[model\]\((https?.*)\)', readme))
|
|
total_num_ckpts += len(ckpts)
|
|
title = collection.paper['Title']
|
|
papertype = collection.data.get('type', 'Algorithm')
|
|
type_count[papertype] += 1
|
|
|
|
readme = PAPERS_ROOT / Path(
|
|
collection.filepath).parent.with_suffix('.md').name
|
|
paper_msgs.append(
|
|
f'\t- [{papertype}] [{title}]({readme}) ({len(ckpts)} ckpts)')
|
|
|
|
type_msg = '\n'.join(
|
|
[f'\t- {type_}: {count}' for type_, count in type_count.items()])
|
|
paper_msg = '\n'.join(paper_msgs)
|
|
|
|
modelzoo = MODELZOO_TEMPLATE.format(
|
|
num_papers=len(collections),
|
|
num_ckpts=total_num_ckpts,
|
|
type_msg=type_msg,
|
|
paper_msg=paper_msg,
|
|
)
|
|
|
|
with open('modelzoo_statistics.md', 'w') as f:
|
|
f.write(modelzoo)
|
|
|
|
|
|
count_papers(model_index.collections)
|
|
|
|
|
|
def generate_paper_page(collection):
|
|
PAPERS_ROOT.mkdir(exist_ok=True)
|
|
|
|
# Write a copy of README
|
|
with open(MMPT_ROOT / collection.readme) as f:
|
|
readme = f.read()
|
|
folder = Path(collection.filepath).parent
|
|
copy = PAPERS_ROOT / folder.with_suffix('.md').name
|
|
|
|
def replace_link(matchobj):
|
|
# Replace relative link to GitHub link.
|
|
name = matchobj.group(1)
|
|
link = matchobj.group(2)
|
|
if not link.startswith('http'):
|
|
assert (folder / link).exists(), \
|
|
f'Link not found:\n{collection.readme}: {link}'
|
|
rel_link = (folder / link).absolute().relative_to(MMPT_ROOT)
|
|
link = GITHUB_PREFIX + str(rel_link)
|
|
return f'[{name}]({link})'
|
|
|
|
content = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', replace_link, readme)
|
|
content = f'---\ngithub_page: /{collection.readme}\n---\n' + content
|
|
|
|
def make_tabs(matchobj):
|
|
"""modify the format from emphasis black symbol to tabs."""
|
|
content = matchobj.group()
|
|
content = content.replace('<!-- [TABS-BEGIN] -->', '')
|
|
content = content.replace('<!-- [TABS-END] -->', '')
|
|
|
|
# split the content by "**{Tab-Name}**""
|
|
splits = re.split(r'^\*\*(.*)\*\*$', content, flags=re.M)[1:]
|
|
tabs_list = []
|
|
for title, tab_content in zip(splits[::2], splits[1::2]):
|
|
title = ':::{tab} ' + title + '\n'
|
|
tab_content = tab_content.strip() + '\n:::\n'
|
|
tabs_list.append(title + tab_content)
|
|
|
|
return '::::{tabs}\n' + ''.join(tabs_list) + '::::'
|
|
|
|
if '<!-- [TABS-BEGIN] -->' in content and '<!-- [TABS-END] -->' in content:
|
|
# Make TABS block a selctive tabs
|
|
try:
|
|
pattern = r'<!-- \[TABS-BEGIN\] -->([\d\D]*?)<!-- \[TABS-END\] -->'
|
|
content = re.sub(pattern, make_tabs, content)
|
|
except Exception as e:
|
|
warnings.warn(f'Can not parse the TABS, get an error : {e}')
|
|
|
|
with open(copy, 'w') as copy_file:
|
|
copy_file.write(content)
|
|
|
|
|
|
for collection in model_index.collections:
|
|
generate_paper_page(collection)
|
|
|
|
|
|
def scatter_results(models):
|
|
model_result_pairs = []
|
|
for model in models:
|
|
if model.results is None:
|
|
result = Result(task=None, dataset=None, metrics={})
|
|
model_result_pairs.append((model, result))
|
|
else:
|
|
for result in model.results:
|
|
model_result_pairs.append((model, result))
|
|
return model_result_pairs
|
|
|
|
|
|
def generate_summary_table(task, model_result_pairs, title=None):
|
|
metrics = set()
|
|
for model, result in model_result_pairs:
|
|
if result.task == task:
|
|
metrics = metrics.union(result.metrics.keys())
|
|
metrics = sorted(list(metrics))
|
|
|
|
rows = []
|
|
for model, result in model_result_pairs:
|
|
if result.task != task:
|
|
continue
|
|
name = model.name
|
|
params = f'{model.metadata.parameters / 1e6:.2f}' # Params
|
|
if model.metadata.flops is not None:
|
|
flops = f'{model.metadata.flops / 1e9:.2f}' # Flops
|
|
else:
|
|
flops = None
|
|
readme = Path(model.collection.filepath).parent.with_suffix('.md').name
|
|
page = f'[链接]({PAPERS_ROOT / readme})'
|
|
model_metrics = []
|
|
for metric in metrics:
|
|
model_metrics.append(str(result.metrics.get(metric, '')))
|
|
|
|
rows.append([name, params, flops, *model_metrics, page])
|
|
|
|
with open('modelzoo_statistics.md', 'a') as f:
|
|
if title is not None:
|
|
f.write(f'\n{title}')
|
|
f.write("""\n```{table}\n:class: model-summary\n""")
|
|
header = [
|
|
'模型',
|
|
'参数量 (M)',
|
|
'Flops (G)',
|
|
*[METRIC_ALIAS.get(metric, metric) for metric in metrics],
|
|
'Readme',
|
|
]
|
|
table_cfg = dict(
|
|
tablefmt='pipe',
|
|
floatfmt='.2f',
|
|
numalign='right',
|
|
stralign='center')
|
|
f.write(tabulate(rows, header, **table_cfg))
|
|
f.write('\n```\n')
|
|
|
|
|
|
def generate_dataset_wise_table(task, model_result_pairs, title=None):
|
|
dataset_rows = defaultdict(list)
|
|
for model, result in model_result_pairs:
|
|
if result.task == task:
|
|
dataset_rows[result.dataset].append((model, result))
|
|
|
|
if title is not None:
|
|
with open('modelzoo_statistics.md', 'a') as f:
|
|
f.write(f'\n{title}')
|
|
for dataset, pairs in dataset_rows.items():
|
|
generate_summary_table(task, pairs, title=f'### {dataset}')
|
|
|
|
|
|
model_result_pairs = scatter_results(model_index.models)
|
|
|
|
# Generate Pretrain Summary
|
|
generate_summary_table(
|
|
task=None,
|
|
model_result_pairs=model_result_pairs,
|
|
title='## 预训练模型',
|
|
)
|
|
|
|
# Generate Image Classification Summary
|
|
generate_dataset_wise_table(
|
|
task='Image Classification',
|
|
model_result_pairs=model_result_pairs,
|
|
title='## 图像分类',
|
|
)
|
|
|
|
# Generate Multi-Label Classification Summary
|
|
generate_dataset_wise_table(
|
|
task='Multi-Label Classification',
|
|
model_result_pairs=model_result_pairs,
|
|
title='## 图像多标签分类',
|
|
)
|
|
|
|
# Generate Image Retrieval Summary
|
|
generate_dataset_wise_table(
|
|
task='Image Retrieval',
|
|
model_result_pairs=model_result_pairs,
|
|
title='## 图像检索',
|
|
)
|