mmpretrain/docs/zh_CN/stat.py

250 lines
7.8 KiB
Python

#!/usr/bin/env python
import re
import warnings
from collections import defaultdict
from pathlib import Path
from modelindex.load_model_index import load
from modelindex.models.Result import Result
from tabulate import tabulate
MMPT_ROOT = Path(__file__).absolute().parents[2]
PAPERS_ROOT = Path('papers') # Path to save generated paper pages.
GITHUB_PREFIX = 'https://github.com/open-mmlab/mmpretrain/blob/main/'
MODELZOO_TEMPLATE = """\
# 模型库统计
在本页面中,我们列举了我们支持的[所有算法](#所有已支持的算法)。你可以点击链接跳转至对应的模型详情页面。
另外,我们还列出了我们提供的所有模型权重文件。你可以使用排序和搜索功能找到需要的模型权重,并使用链接跳转至模型详情页面。
## 所有已支持的算法
* 论文数量:{num_papers}
{type_msg}
* 模型权重文件数量:{num_ckpts}
{paper_msg}
""" # noqa: E501
METRIC_ALIAS = {
'Top 1 Accuracy': 'Top-1 (%)',
'Top 5 Accuracy': 'Top-5 (%)',
}
model_index = load(str(MMPT_ROOT / 'model-index.yml'))
def build_collections(model_index):
col_by_name = {}
for col in model_index.collections:
setattr(col, 'models', [])
col_by_name[col.name] = col
for model in model_index.models:
col = col_by_name[model.in_collection]
col.models.append(model)
setattr(model, 'collection', col)
if model.results is None:
setattr(model, 'tasks', [])
else:
setattr(model, 'tasks', [result.task for result in model.results])
build_collections(model_index)
def count_papers(collections):
total_num_ckpts = 0
type_count = defaultdict(int)
paper_msgs = []
for collection in collections:
with open(MMPT_ROOT / collection.readme) as f:
readme = f.read()
ckpts = set(x.lower().strip()
for x in re.findall(r'\[model\]\((https?.*)\)', readme))
total_num_ckpts += len(ckpts)
title = collection.paper['Title']
papertype = collection.data.get('type', 'Algorithm')
type_count[papertype] += 1
readme = PAPERS_ROOT / Path(
collection.filepath).parent.with_suffix('.md').name
paper_msgs.append(
f'\t- [{papertype}] [{title}]({readme}) ({len(ckpts)} ckpts)')
type_msg = '\n'.join(
[f'\t- {type_}: {count}' for type_, count in type_count.items()])
paper_msg = '\n'.join(paper_msgs)
modelzoo = MODELZOO_TEMPLATE.format(
num_papers=len(collections),
num_ckpts=total_num_ckpts,
type_msg=type_msg,
paper_msg=paper_msg,
)
with open('modelzoo_statistics.md', 'w') as f:
f.write(modelzoo)
count_papers(model_index.collections)
def generate_paper_page(collection):
PAPERS_ROOT.mkdir(exist_ok=True)
# Write a copy of README
with open(MMPT_ROOT / collection.readme) as f:
readme = f.read()
folder = Path(collection.filepath).parent
copy = PAPERS_ROOT / folder.with_suffix('.md').name
def replace_link(matchobj):
# Replace relative link to GitHub link.
name = matchobj.group(1)
link = matchobj.group(2)
if not link.startswith('http'):
assert (folder / link).exists(), \
f'Link not found:\n{collection.readme}: {link}'
rel_link = (folder / link).absolute().relative_to(MMPT_ROOT)
link = GITHUB_PREFIX + str(rel_link)
return f'[{name}]({link})'
content = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', replace_link, readme)
content = f'---\ngithub_page: /{collection.readme}\n---\n' + content
def make_tabs(matchobj):
"""modify the format from emphasis black symbol to tabs."""
content = matchobj.group()
content = content.replace('<!-- [TABS-BEGIN] -->', '')
content = content.replace('<!-- [TABS-END] -->', '')
# split the content by "**{Tab-Name}**""
splits = re.split(r'^\*\*(.*)\*\*$', content, flags=re.M)[1:]
tabs_list = []
for title, tab_content in zip(splits[::2], splits[1::2]):
title = ':::{tab} ' + title + '\n'
tab_content = tab_content.strip() + '\n:::\n'
tabs_list.append(title + tab_content)
return '::::{tabs}\n' + ''.join(tabs_list) + '::::'
if '<!-- [TABS-BEGIN] -->' in content and '<!-- [TABS-END] -->' in content:
# Make TABS block a selctive tabs
try:
pattern = r'<!-- \[TABS-BEGIN\] -->([\d\D]*?)<!-- \[TABS-END\] -->'
content = re.sub(pattern, make_tabs, content)
except Exception as e:
warnings.warn(f'Can not parse the TABS, get an error : {e}')
with open(copy, 'w') as copy_file:
copy_file.write(content)
for collection in model_index.collections:
generate_paper_page(collection)
def scatter_results(models):
model_result_pairs = []
for model in models:
if model.results is None:
result = Result(task=None, dataset=None, metrics={})
model_result_pairs.append((model, result))
else:
for result in model.results:
model_result_pairs.append((model, result))
return model_result_pairs
def generate_summary_table(task, model_result_pairs, title=None):
metrics = set()
for model, result in model_result_pairs:
if result.task == task:
metrics = metrics.union(result.metrics.keys())
metrics = sorted(list(metrics))
rows = []
for model, result in model_result_pairs:
if result.task != task:
continue
name = model.name
params = f'{model.metadata.parameters / 1e6:.2f}' # Params
if model.metadata.flops is not None:
flops = f'{model.metadata.flops / 1e9:.2f}' # Flops
else:
flops = None
readme = Path(model.collection.filepath).parent.with_suffix('.md').name
page = f'[链接]({PAPERS_ROOT / readme})'
model_metrics = []
for metric in metrics:
model_metrics.append(str(result.metrics.get(metric, '')))
rows.append([name, params, flops, *model_metrics, page])
with open('modelzoo_statistics.md', 'a') as f:
if title is not None:
f.write(f'\n{title}')
f.write("""\n```{table}\n:class: model-summary\n""")
header = [
'模型',
'参数量 (M)',
'Flops (G)',
*[METRIC_ALIAS.get(metric, metric) for metric in metrics],
'Readme',
]
table_cfg = dict(
tablefmt='pipe',
floatfmt='.2f',
numalign='right',
stralign='center')
f.write(tabulate(rows, header, **table_cfg))
f.write('\n```\n')
def generate_dataset_wise_table(task, model_result_pairs, title=None):
dataset_rows = defaultdict(list)
for model, result in model_result_pairs:
if result.task == task:
dataset_rows[result.dataset].append((model, result))
if title is not None:
with open('modelzoo_statistics.md', 'a') as f:
f.write(f'\n{title}')
for dataset, pairs in dataset_rows.items():
generate_summary_table(task, pairs, title=f'### {dataset}')
model_result_pairs = scatter_results(model_index.models)
# Generate Pretrain Summary
generate_summary_table(
task=None,
model_result_pairs=model_result_pairs,
title='## 预训练模型',
)
# Generate Image Classification Summary
generate_dataset_wise_table(
task='Image Classification',
model_result_pairs=model_result_pairs,
title='## 图像分类',
)
# Generate Multi-Label Classification Summary
generate_dataset_wise_table(
task='Multi-Label Classification',
model_result_pairs=model_result_pairs,
title='## 图像多标签分类',
)
# Generate Image Retrieval Summary
generate_dataset_wise_table(
task='Image Retrieval',
model_result_pairs=model_result_pairs,
title='## 图像检索',
)