212 lines
7.4 KiB
Markdown
212 lines
7.4 KiB
Markdown
# Analysis
|
||
|
||
<!-- TOC -->
|
||
|
||
- [Log Analysis](#log-analysis)
|
||
- [Plot Curves](#plot-curves)
|
||
- [Calculate Training Time](#calculate-training-time)
|
||
- [Result Analysis](#result-analysis)
|
||
- [Evaluate Results](#evaluate-results)
|
||
- [View Typical Results](#view-typical-results)
|
||
- [Model Complexity](#model-complexity)
|
||
- [FAQs](#faqs)
|
||
|
||
<!-- TOC -->
|
||
|
||
## Log Analysis
|
||
|
||
### Plot Curves
|
||
|
||
`tools/analysis_tools/analyze_logs.py` plots curves of given keys according to the log files.
|
||
|
||
<div align=center><img src="../_static/image/tools/analysis/analyze_log.jpg" style=" width: 75%; height: 30%; "></div>
|
||
|
||
```shell
|
||
python tools/analysis_tools/analyze_logs.py plot_curve \
|
||
${JSON_LOGS} \
|
||
[--keys ${KEYS}] \
|
||
[--title ${TITLE}] \
|
||
[--legend ${LEGEND}] \
|
||
[--backend ${BACKEND}] \
|
||
[--style ${STYLE}] \
|
||
[--out ${OUT_FILE}] \
|
||
[--window-size ${WINDOW_SIZE}]
|
||
```
|
||
|
||
**Description of all arguments**:
|
||
|
||
- `json_logs` : The paths of the log files, separate multiple files by spaces.
|
||
- `--keys` : The fields of the logs to analyze, separate multiple keys by spaces. Defaults to 'loss'.
|
||
- `--title` : The title of the figure. Defaults to use the filename.
|
||
- `--legend` : The names of legend, the number of which must be equal to `len(${JSON_LOGS}) * len(${KEYS})`. Defaults to use `"${JSON_LOG}-${KEYS}"`.
|
||
- `--backend` : The backend of matplotlib. Defaults to auto selected by matplotlib.
|
||
- `--style` : The style of the figure. Default to `whitegrid`.
|
||
- `--out` : The path of the output picture. If not set, the figure won't be saved.
|
||
- `--window-size`: The shape of the display window. The format should be `'W*H'`. Defaults to `'12*7'`.
|
||
|
||
```{note}
|
||
The `--style` option depends on `seaborn` package, please install it before setting it.
|
||
```
|
||
|
||
Examples:
|
||
|
||
- Plot the loss curve in training.
|
||
|
||
```shell
|
||
python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys loss --legend loss
|
||
```
|
||
|
||
- Plot the top-1 accuracy and top-5 accuracy curves, and save the figure to results.jpg.
|
||
|
||
```shell
|
||
python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys accuracy_top-1 accuracy_top-5 --legend top1 top5 --out results.jpg
|
||
```
|
||
|
||
- Compare the top-1 accuracy of two log files in the same figure.
|
||
|
||
```shell
|
||
python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys accuracy_top-1 --legend exp1 exp2
|
||
```
|
||
|
||
```{note}
|
||
The tool will automatically select to find keys in training logs or validation logs according to the keys.
|
||
Therefore, if you add a custom evaluation metric, please also add the key to `TEST_METRICS` in this tool.
|
||
```
|
||
|
||
### Calculate Training Time
|
||
|
||
`tools/analysis_tools/analyze_logs.py` can also calculate the training time according to the log files.
|
||
|
||
```shell
|
||
python tools/analysis_tools/analyze_logs.py cal_train_time \
|
||
${JSON_LOGS}
|
||
[--include-outliers]
|
||
```
|
||
|
||
**Description of all arguments**:
|
||
|
||
- `json_logs` : The paths of the log files, separate multiple files by spaces.
|
||
- `--include-outliers` : If set, include the first iteration in each epoch (Sometimes the time of first iterations is longer).
|
||
|
||
Example:
|
||
|
||
```shell
|
||
python tools/analysis_tools/analyze_logs.py cal_train_time work_dirs/some_exp/20200422_153324.log.json
|
||
```
|
||
|
||
The output is expected to be like the below.
|
||
|
||
```text
|
||
-----Analyze train time of work_dirs/some_exp/20200422_153324.log.json-----
|
||
slowest epoch 68, average time is 0.3818
|
||
fastest epoch 1, average time is 0.3694
|
||
time std over epochs is 0.0020
|
||
average iter time: 0.3777 s/iter
|
||
```
|
||
|
||
## Result Analysis
|
||
|
||
With the `--out` argument in `tools/train.py`, we can save the inference results of all samples as a file.
|
||
And with this result file, we can do further analysis.
|
||
|
||
### Evaluate Results
|
||
|
||
`tools/analysis_tools/eval_metric.py` can evaluate metrics again.
|
||
|
||
```shell
|
||
python tools/analysis_tools/eval_metric.py \
|
||
${CONFIG} \
|
||
${RESULT} \
|
||
[--metrics ${METRICS}] \
|
||
[--cfg-options ${CFG_OPTIONS}] \
|
||
[--metric-options ${METRIC_OPTIONS}]
|
||
```
|
||
|
||
Description of all arguments:
|
||
|
||
- `config` : The path of the model config file.
|
||
- `result`: The Output result file in json/pickle format from `tools/test.py`.
|
||
- `--metrics` : Evaluation metrics, the acceptable values depend on the dataset.
|
||
- `--cfg-options`: If specified, the key-value pair config will be merged into the config file, for more details please refer to [Tutorial 1: Learn about Configs](../tutorials/config.md)
|
||
- `--metric-options`: If specified, the key-value pair arguments will be passed to the `metric_options` argument of dataset's `evaluate` function.
|
||
|
||
```{note}
|
||
In `tools/test.py`, we support using `--out-items` option to select which kind of results will be saved. Please ensure the result file includes "class_scores" to use this tool.
|
||
```
|
||
|
||
**Examples**:
|
||
|
||
```shell
|
||
python tools/analysis_tools/eval_metric.py configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py your_result.pkl --metrics accuracy --metric-options "topk=(1,5)"
|
||
```
|
||
|
||
### View Typical Results
|
||
|
||
`tools/analysis_tools/analyze_results.py` can save the images with the highest scores in successful or failed prediction.
|
||
|
||
```shell
|
||
python tools/analysis_tools/analyze_results.py \
|
||
${CONFIG} \
|
||
${RESULT} \
|
||
[--out-dir ${OUT_DIR}] \
|
||
[--topk ${TOPK}] \
|
||
[--cfg-options ${CFG_OPTIONS}]
|
||
```
|
||
|
||
**Description of all arguments**:
|
||
|
||
- `config` : The path of the model config file.
|
||
- `result`: Output result file in json/pickle format from `tools/test.py`.
|
||
- `--out_dir`: Directory to store output files.
|
||
- `--topk`: The number of images in successful or failed prediction with the highest `topk` scores to save. If not specified, it will be set to 20.
|
||
- `--cfg-options`: If specified, the key-value pair config will be merged into the config file, for more details please refer to [Tutorial 1: Learn about Configs](../tutorials/config.md)
|
||
|
||
```{note}
|
||
In `tools/test.py`, we support using `--out-items` option to select which kind of results will be saved. Please ensure the result file includes "pred_score", "pred_label" and "pred_class" to use this tool.
|
||
```
|
||
|
||
**Examples**:
|
||
|
||
```shell
|
||
python tools/analysis_tools/analyze_results.py \
|
||
configs/resnet/resnet50_b32x8_imagenet.py \
|
||
result.pkl \
|
||
--out_dir results \
|
||
--topk 50
|
||
```
|
||
|
||
## Model Complexity
|
||
|
||
### Get the FLOPs and params (experimental)
|
||
|
||
We provide a script adapted from [flops-counter.pytorch](https://github.com/sovrasov/flops-counter.pytorch) to compute the FLOPs and params of a given model.
|
||
|
||
```shell
|
||
python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
|
||
```
|
||
|
||
Description of all arguments:
|
||
|
||
- `config` : The path of the model config file.
|
||
- `--shape`: Input size, support single value or double value parameter, such as `--shape 256` or `--shape 224 256`. If not set, default to be `224 224`.
|
||
|
||
You will get a result like this.
|
||
|
||
```text
|
||
==============================
|
||
Input shape: (3, 224, 224)
|
||
Flops: 4.12 GFLOPs
|
||
Params: 25.56 M
|
||
==============================
|
||
```
|
||
|
||
```{warning}
|
||
This tool is still experimental and we do not guarantee that the number is correct. You may well use the result for simple comparisons, but double-check it before you adopt it in technical reports or papers.
|
||
- FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 224, 224).
|
||
- Some operators are not counted into FLOPs like GN and custom operators. Refer to [`mmcv.cnn.get_model_complexity_info()`](https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py) for details.
|
||
```
|
||
|
||
## FAQs
|
||
|
||
- None
|