mmpretrain/configs/mobilenet_v3/mobilenet-v3-small_8xb128_i...

29 lines
817 B
Python

# Refers to https://pytorch.org/blog/ml-models-torchvision-v0.9/#classification
_base_ = [
'../_base_/models/mobilenet_v3/mobilenet_v3_small_imagenet.py',
'../_base_/datasets/imagenet_bs128_mbv3.py',
'../_base_/default_runtime.py',
]
# schedule settings
optim_wrapper = dict(
optimizer=dict(
type='RMSprop',
lr=0.064,
alpha=0.9,
momentum=0.9,
eps=0.0316,
weight_decay=1e-5))
param_scheduler = dict(type='StepLR', by_epoch=True, step_size=2, gamma=0.973)
train_cfg = dict(by_epoch=True, max_epochs=600, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (8 GPUs) x (128 samples per GPU)
auto_scale_lr = dict(base_batch_size=1024)