mmpretrain/tests/test_models/test_selfsup/test_mff.py

64 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmpretrain.models import MFF, MFFViT
from mmpretrain.structures import DataSample
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_mae_vit():
backbone = dict(
arch='b', patch_size=16, mask_ratio=0.75, out_indices=[1, 11])
mae_backbone = MFFViT(**backbone)
mae_backbone.init_weights()
fake_inputs = torch.randn((2, 3, 224, 224))
# test with mask
fake_outputs = mae_backbone(fake_inputs)[0]
assert list(fake_outputs.shape) == [2, 50, 768]
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_mae():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
backbone = dict(
type='MFFViT',
arch='b',
patch_size=16,
mask_ratio=0.75,
out_indices=[1, 11])
neck = dict(
type='MAEPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.,
)
loss = dict(type='PixelReconstructionLoss', criterion='L2')
head = dict(
type='MAEPretrainHead', norm_pix=False, patch_size=16, loss=loss)
alg = MFF(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=data_preprocessor)
fake_data = {
'inputs': torch.randn((2, 3, 224, 224)),
'data_samples': [DataSample() for _ in range(2)]
}
fake_inputs = alg.data_preprocessor(fake_data)
fake_outputs = alg(**fake_inputs, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)