mmpretrain/tests/test_runtime/test_num_class_hook.py

85 lines
2.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import logging
import tempfile
from unittest.mock import MagicMock
import mmcv.runner as mmcv_runner
import pytest
import torch
from mmcv.runner import obj_from_dict
from torch.utils.data import DataLoader, Dataset
from mmcls.core.hook import ClassNumCheckHook
from mmcls.models.heads.base_head import BaseHead
class ExampleDataset(Dataset):
def __init__(self, CLASSES):
self.CLASSES = CLASSES
def __getitem__(self, idx):
results = dict(img=torch.tensor([1]), img_metas=dict())
return results
def __len__(self):
return 1
class ExampleHead(BaseHead):
def __init__(self, init_cfg=None):
super(BaseHead, self).__init__(init_cfg)
self.num_classes = 4
def forward_train(self, x, gt_label=None, **kwargs):
pass
class ExampleModel(torch.nn.Module):
def __init__(self):
super(ExampleModel, self).__init__()
self.test_cfg = None
self.conv = torch.nn.Conv2d(3, 3, 3)
self.head = ExampleHead()
def forward(self, img, img_metas, test_mode=False, **kwargs):
return img
def train_step(self, data_batch, optimizer):
loss = self.forward(**data_batch)
return dict(loss=loss)
@pytest.mark.parametrize('runner_type',
['EpochBasedRunner', 'IterBasedRunner'])
@pytest.mark.parametrize(
'CLASSES', [None, ('A', 'B', 'C', 'D', 'E'), ('A', 'B', 'C', 'D')])
def test_num_class_hook(runner_type, CLASSES):
test_dataset = ExampleDataset(CLASSES)
loader = DataLoader(test_dataset, batch_size=1)
model = ExampleModel()
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer = obj_from_dict(optim_cfg, torch.optim,
dict(params=model.parameters()))
with tempfile.TemporaryDirectory() as tmpdir:
num_class_hook = ClassNumCheckHook()
logger_mock = MagicMock(spec=logging.Logger)
runner = getattr(mmcv_runner, runner_type)(
model=model,
optimizer=optimizer,
work_dir=tmpdir,
logger=logger_mock,
max_epochs=1)
runner.register_hook(num_class_hook)
if CLASSES is None:
runner.run([loader], [('train', 1)], 1)
logger_mock.warning.assert_called()
elif len(CLASSES) != 4:
with pytest.raises(AssertionError):
runner.run([loader], [('train', 1)], 1)
else:
runner.run([loader], [('train', 1)], 1)