77 lines
2.3 KiB
Python
77 lines
2.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
from collections import OrderedDict
|
|
|
|
import mmengine
|
|
import torch
|
|
from mmengine.runner import CheckpointLoader
|
|
|
|
|
|
def convert_glip(ckpt):
|
|
|
|
def correct_unfold_reduction_order(x):
|
|
out_channel, in_channel = x.shape
|
|
x = x.reshape(out_channel, 4, in_channel // 4)
|
|
x = x[:, [0, 2, 1, 3], :].transpose(1,
|
|
2).reshape(out_channel, in_channel)
|
|
return x
|
|
|
|
def correct_unfold_norm_order(x):
|
|
in_channel = x.shape[0]
|
|
x = x.reshape(4, in_channel // 4)
|
|
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
|
|
return x
|
|
|
|
new_ckpt = OrderedDict()
|
|
|
|
for k, v in list(ckpt.items()):
|
|
if 'language_backbone' in k or 'backbone' not in k or 'fpn' in k:
|
|
continue
|
|
new_v = v
|
|
new_k = k.replace('body.', '')
|
|
new_k = new_k.replace('module.', '')
|
|
if new_k.startswith('backbone.layers'):
|
|
new_k = new_k.replace('backbone.layers', 'backbone.stages')
|
|
if 'mlp' in new_k:
|
|
new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0')
|
|
new_k = new_k.replace('mlp.fc2', 'ffn.layers.1')
|
|
elif 'attn' in new_k:
|
|
new_k = new_k.replace('attn', 'attn.w_msa')
|
|
elif 'patch_embed' in k:
|
|
new_k = new_k.replace('proj', 'projection')
|
|
elif 'downsample' in new_k:
|
|
if 'reduction.' in k:
|
|
new_v = correct_unfold_reduction_order(new_v)
|
|
elif 'norm.' in k:
|
|
new_v = correct_unfold_norm_order(new_v)
|
|
|
|
new_ckpt[new_k] = new_v
|
|
return new_ckpt
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert keys in pretrained glip models to mmcls style.')
|
|
parser.add_argument('src', help='src model path or url')
|
|
# The dst path must be a full path of the new checkpoint.
|
|
parser.add_argument('dst', help='save path')
|
|
args = parser.parse_args()
|
|
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
|
|
|
|
if 'model' in checkpoint:
|
|
state_dict = checkpoint['model']
|
|
else:
|
|
state_dict = checkpoint
|
|
|
|
weight = convert_glip(state_dict)
|
|
mmengine.mkdir_or_exist(osp.dirname(args.dst))
|
|
torch.save(weight, args.dst)
|
|
|
|
print('Done!!')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|