mmpretrain/tools/model_converters/glip_to_mmpretrain.py

77 lines
2.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
import mmengine
import torch
from mmengine.runner import CheckpointLoader
def convert_glip(ckpt):
def correct_unfold_reduction_order(x):
out_channel, in_channel = x.shape
x = x.reshape(out_channel, 4, in_channel // 4)
x = x[:, [0, 2, 1, 3], :].transpose(1,
2).reshape(out_channel, in_channel)
return x
def correct_unfold_norm_order(x):
in_channel = x.shape[0]
x = x.reshape(4, in_channel // 4)
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
return x
new_ckpt = OrderedDict()
for k, v in list(ckpt.items()):
if 'language_backbone' in k or 'backbone' not in k or 'fpn' in k:
continue
new_v = v
new_k = k.replace('body.', '')
new_k = new_k.replace('module.', '')
if new_k.startswith('backbone.layers'):
new_k = new_k.replace('backbone.layers', 'backbone.stages')
if 'mlp' in new_k:
new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0')
new_k = new_k.replace('mlp.fc2', 'ffn.layers.1')
elif 'attn' in new_k:
new_k = new_k.replace('attn', 'attn.w_msa')
elif 'patch_embed' in k:
new_k = new_k.replace('proj', 'projection')
elif 'downsample' in new_k:
if 'reduction.' in k:
new_v = correct_unfold_reduction_order(new_v)
elif 'norm.' in k:
new_v = correct_unfold_norm_order(new_v)
new_ckpt[new_k] = new_v
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys in pretrained glip models to mmcls style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
weight = convert_glip(state_dict)
mmengine.mkdir_or_exist(osp.dirname(args.dst))
torch.save(weight, args.dst)
print('Done!!')
if __name__ == '__main__':
main()