mmrazor/tests/test_models/test_classifier/test_imageclassifier.py

46 lines
1.4 KiB
Python
Raw Normal View History

[Feature] Add Autoformer algorithm (#315) * update candidates * update subnet_sampler_loop * update candidate * add readme * rename variable * rename variable * clean * update * add doc string * Revert "[Improvement] Support for candidate multiple dimensional search constraints." * [Improvement] Update Candidate with multi-dim search constraints. (#322) * update doc * add support type * clean code * update candidates * clean * xx * set_resource -> set_score * fix ci bug * py36 lint * fix bug * fix check constrain * py36 ci * redesign candidate * fix pre-commit * update cfg * add build_resource_estimator * fix ci bug * remove runner.epoch in testcase * [Feature] Autoformer architecture and dynamicOPs (#327) * add DynamicSequential * dynamiclayernorm * add dynamic_pathchembed * add DynamicMultiheadAttention and DynamicRelativePosition2D * add channel-level dynamicOP * add autoformer algo * clean notes * adapt channel_mutator * vit fly * fix import * mutable init * remove annotation * add DynamicInputResizer * add unittest for mutables * add OneShotMutableChannelUnit_VIT * clean code * reset unit for vit * remove attr * add autoformer backbone UT * add valuemutator UT * clean code * add autoformer algo UT * update classifier UT * fix test error * ignore * make lint * update * fix lint * mutable_attrs * fix test * fix error * remove DynamicInputResizer * fix test ci * remove InputResizer * rename variables * modify type * Continued improvements of ChannelUnit * fix lint * fix lint * remove OneShotMutableChannelUnit * adjust derived type * combination mixins * clean code * fix sample subnet * search loop fly * more annotations * avoid counter warning and modify batch_augment cfg by gy * restore * source_value_mutables restriction * simply arch_setting api * update * clean * fix ut
2022-11-14 13:01:04 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
from mmrazor.models import SearchableImageClassifier
class TestSearchableImageClassifier(TestCase):
def test_init(self):
arch_setting = dict(
mlp_ratios=[3.0, 3.5, 4.0],
num_heads=[8, 9, 10],
depth=[14, 15, 16],
embed_dims=[528, 576, 624])
supernet_kwargs = dict(
backbone=dict(
_scope_='mmrazor',
type='AutoformerBackbone',
arch_setting=arch_setting),
neck=None,
head=dict(
_scope_='mmrazor',
type='DynamicLinearClsHead',
num_classes=1000,
in_channels=624,
loss=dict(
type='mmcls.LabelSmoothLoss',
mode='original',
num_classes=1000,
label_smooth_val=0.1,
loss_weight=1.0),
topk=(1, 5)),
connect_head=dict(connect_with_backbone='backbone.last_mutable'),
)
supernet = SearchableImageClassifier(**supernet_kwargs)
# test connect_with_backbone
self.assertEqual(
supernet.backbone.last_mutable.activated_channels,
len(
supernet.head.fc.get_mutable_attr(
'in_channels').current_choice))