fix bug in benchmark_test (#364)

fix bug in configs

Co-authored-by: Your Name <you@example.com>
This commit is contained in:
LKJacky 2022-12-05 10:59:50 +08:00 committed by GitHub
parent 8fe54c9f64
commit b1db8f4999
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 26 additions and 31 deletions

View File

@ -87,39 +87,34 @@ def replace_to_ceph(cfg):
's3://openmmlab/datasets/classification/imagenet',
}))
def _process_pipeline(dataset, name):
def _process_dataset(dataset):
def replace_img(pipeline):
if pipeline['type'] == 'LoadImageFromFile':
pipeline['file_client_args'] = file_client_args
def replace_ann(pipeline):
if pipeline['type'] == 'LoadAnnotations' or pipeline[
'type'] == 'LoadPanopticAnnotations':
pipeline['file_client_args'] = file_client_args
def replace_pipline(pipelines):
for pipeline in pipelines:
if pipeline['type'] in [
'LoadImageFromFile',
'LoadAnnotations',
'LoadPanopticAnnotations',
]:
pipeline['file_client_args'] = file_client_args
if dataset['type'] in ['CityscapesDataset']:
dataset['file_client_args'] = file_client_args
if 'pipeline' in dataset:
replace_img(dataset.pipeline[0])
replace_ann(dataset.pipeline[1])
if 'dataset' in dataset:
# dataset wrapper
replace_img(dataset.dataset.pipeline[0])
replace_ann(dataset.dataset.pipeline[1])
else:
# dataset wrapper
replace_img(dataset.dataset.pipeline[0])
replace_ann(dataset.dataset.pipeline[1])
replace_pipline(dataset['pipeline'])
if 'dataset' in dataset:
_process_dataset(dataset['dataset'])
def _process_evaluator(evaluator, name):
def _process_evaluator(evaluator):
if evaluator['type'] == 'CocoPanopticMetric':
evaluator['file_client_args'] = file_client_args
# half ceph
_process_pipeline(cfg.train_dataloader.dataset, cfg.filename)
_process_pipeline(cfg.val_dataloader.dataset, cfg.filename)
_process_pipeline(cfg.test_dataloader.dataset, cfg.filename)
_process_evaluator(cfg.val_evaluator, cfg.filename)
_process_evaluator(cfg.test_evaluator, cfg.filename)
_process_dataset(cfg.train_dataloader.dataset, )
_process_dataset(cfg.val_dataloader.dataset)
_process_dataset(cfg.test_dataloader.dataset)
_process_evaluator(cfg.val_evaluator)
_process_evaluator(cfg.test_evaluator)
def create_test_job_batch(commands, model_info, args, port):
@ -169,7 +164,7 @@ def create_test_job_batch(commands, model_info, args, port):
launcher = 'none' if args.local else 'slurm'
runner = 'python' if args.local else 'srun python'
master_port = f'NASTER_PORT={port}'
master_port = f'MASTER_PORT={port}'
script_name = osp.join('tools', 'test.py')
job_script = (f'#!/bin/bash\n'

View File

@ -1,4 +1,4 @@
_base_ = ['./pkd_fpn_frcnn_r101_frcnn_r50_2x_coco.py']
_base_ = ['./pkd_fpn_faster-rcnn_r101_faster-rcnn_r50_2x_coco.py']
teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth' # noqa: E501

View File

@ -26,7 +26,7 @@ Models:
Metrics:
Top 1 Accuracy: 74.23
Top 5 Accuracy: 91.73
Config: configs/pruning/mmcls/autoslim/autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-530M.py
Config: configs/nas/mmcls/autoslim/autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-530M.py
Weights: https://download.openmmlab.com/mmrazor/v1/autoslim/autoslim_mbv2_subnet_8xb256_in1k_flops-530M_acc-74.23_20220715-aa8754fe.pth
- Name: autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-320M
In Collection: AutoSlim
@ -41,7 +41,7 @@ Models:
Metrics:
Top 1 Accuracy: 72.73
Top 5 Accuracy: 90.84
Config: configs/pruning/mmcls/autoslim/autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-320M.py
Config: configs/nas/mmcls/autoslim/autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-320M.py
Weights: https://download.openmmlab.com/mmrazor/v1/autoslim/autoslim_mbv2_subnet_8xb256_in1k_flops-320M_acc-72.73_20220715-9aa8f8ae.pth
- Name: autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-220M
In Collection: AutoSlim
@ -56,5 +56,5 @@ Models:
Metrics:
Top 1 Accuracy: 71.4
Top 5 Accuracy: 90.08
Config: configs/pruning/mmcls/autoslim/autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-220M.py
Config: configs/nas/mmcls/autoslim/autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-220M.py
Weights: https://download.openmmlab.com/mmrazor/v1/autoslim/autoslim_mbv2_subnet_8xb256_in1k_flops-220M_acc-71.4_20220715-9c288f3b.pth

View File

@ -24,5 +24,5 @@ Models:
Metrics:
Top 1 Accuracy: 97.32
Top 5 Accuracy: 99.94
Config: configs/nas/darts/darts_subnet_1xb96_cifar10_2.0.py
Config: configs/nas/mmcls/darts/darts_subnet_1xb96_cifar10_2.0.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/nas/darts/darts_subnetnet_1xb96_cifar10/darts_subnetnet_1xb96_cifar10_acc-97.32_20211222-e5727921.pth