add gptq implementation
parent
a578fad2bc
commit
d0569a0478
|
@ -0,0 +1,98 @@
|
||||||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from mmrazor.utils import print_log
|
||||||
|
from .ops import GPTQLinear, GPTQConv2d, GPTQMixIn
|
||||||
|
from .utils import replace_with_dynamic_ops
|
||||||
|
from .quantizer import Quantizer
|
||||||
|
|
||||||
|
|
||||||
|
def to_static_model(model: nn.Module):
|
||||||
|
from mmrazor.structures.subnet.fix_subnet import (export_fix_subnet,
|
||||||
|
load_fix_subnet)
|
||||||
|
fix_subnet = export_fix_subnet(model)[0]
|
||||||
|
load_fix_subnet(model, fix_subnet)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
class GPTQCompressor():
|
||||||
|
|
||||||
|
# init
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.model: nn.Module = None
|
||||||
|
|
||||||
|
def prepare(self,
|
||||||
|
model: nn.Module,
|
||||||
|
quant_conv=True,
|
||||||
|
quant_linear=True) -> None:
|
||||||
|
self.model = model
|
||||||
|
quant_modules: dict = {}
|
||||||
|
if quant_conv:
|
||||||
|
quant_modules[nn.Conv2d] = GPTQConv2d
|
||||||
|
if quant_linear:
|
||||||
|
quant_modules[nn.Linear] = GPTQLinear
|
||||||
|
replace_with_dynamic_ops(model, quant_modules)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def to_static_model(cls, model):
|
||||||
|
return to_static_model(model)
|
||||||
|
|
||||||
|
# hessian
|
||||||
|
|
||||||
|
def start_init_hessian(self):
|
||||||
|
for module in self.sparse_ops:
|
||||||
|
module.start_init_hessian()
|
||||||
|
|
||||||
|
def end_init_hessian(self):
|
||||||
|
for module in self.sparse_ops:
|
||||||
|
module.end_init_hessian()
|
||||||
|
|
||||||
|
def keep_hessian_in_float(self):
|
||||||
|
for op in self.sparse_ops:
|
||||||
|
op.keep_hessian_in_float()
|
||||||
|
|
||||||
|
# quant
|
||||||
|
def quant(self,
|
||||||
|
quantizer,
|
||||||
|
blocksize=128,
|
||||||
|
percdamp=0.01,
|
||||||
|
groupsize=-1,
|
||||||
|
actorder=False,
|
||||||
|
device=torch.device('cuda')):
|
||||||
|
for name, module in self.named_quant_ops:
|
||||||
|
try:
|
||||||
|
original_device = next(module.parameters()).device
|
||||||
|
module: GPTQMixIn = module.to(device)
|
||||||
|
error = module.quant(
|
||||||
|
quantizer=quantizer,
|
||||||
|
blocksize=blocksize,
|
||||||
|
percdamp=percdamp,
|
||||||
|
groupsize=groupsize,
|
||||||
|
actorder=actorder
|
||||||
|
)
|
||||||
|
print_log(f'quant {name} success \t error = {error}')
|
||||||
|
module.to(original_device)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
except Exception as e:
|
||||||
|
print_log(f'quant {name} failed as {e}')
|
||||||
|
|
||||||
|
def quant_default_setting(self, device=torch.device('cuda:0')):
|
||||||
|
quantizer = Quantizer()
|
||||||
|
self.quant(quantizer=quantizer)
|
||||||
|
|
||||||
|
# ops
|
||||||
|
|
||||||
|
@property
|
||||||
|
def quant_ops(self):
|
||||||
|
assert self.model is not None
|
||||||
|
for module in self.model.modules():
|
||||||
|
if isinstance(module, GPTQMixIn):
|
||||||
|
yield module
|
||||||
|
|
||||||
|
@property
|
||||||
|
def named_quant_ops(self):
|
||||||
|
for name, module in self.model.named_modules():
|
||||||
|
if isinstance(module, GPTQMixIn):
|
||||||
|
yield name, module
|
|
@ -0,0 +1,193 @@
|
||||||
|
#https://github.com/fpgaminer/GPTQ-triton
|
||||||
|
"""
|
||||||
|
Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import builtins
|
||||||
|
import math
|
||||||
|
import time
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
import triton
|
||||||
|
|
||||||
|
|
||||||
|
class Autotuner(triton.KernelInterface):
|
||||||
|
|
||||||
|
def __init__(self, fn, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None, nearest_power_of_two: bool = False):
|
||||||
|
'''
|
||||||
|
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
||||||
|
'perf_model': performance model used to predicate running time with different configs, returns running time
|
||||||
|
'top_k': number of configs to bench
|
||||||
|
'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
|
||||||
|
'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results
|
||||||
|
'''
|
||||||
|
if not configs:
|
||||||
|
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
|
||||||
|
else:
|
||||||
|
self.configs = configs
|
||||||
|
self.key_idx = [arg_names.index(k) for k in key]
|
||||||
|
self.nearest_power_of_two = nearest_power_of_two
|
||||||
|
self.cache = {}
|
||||||
|
# hook to reset all required tensor to zeros before relaunching a kernel
|
||||||
|
self.hook = lambda args: 0
|
||||||
|
if reset_to_zero is not None:
|
||||||
|
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
||||||
|
|
||||||
|
def _hook(args):
|
||||||
|
for i in self.reset_idx:
|
||||||
|
args[i].zero_()
|
||||||
|
|
||||||
|
self.hook = _hook
|
||||||
|
self.arg_names = arg_names
|
||||||
|
# prune configs
|
||||||
|
if prune_configs_by:
|
||||||
|
perf_model, top_k = prune_configs_by['perf_model'], prune_configs_by['top_k']
|
||||||
|
if 'early_config_prune' in prune_configs_by:
|
||||||
|
early_config_prune = prune_configs_by['early_config_prune']
|
||||||
|
else:
|
||||||
|
perf_model, top_k, early_config_prune = None, None, None
|
||||||
|
self.perf_model, self.configs_top_k = perf_model, top_k
|
||||||
|
self.early_config_prune = early_config_prune
|
||||||
|
self.fn = fn
|
||||||
|
|
||||||
|
def _bench(self, *args, config, **meta):
|
||||||
|
# check for conflicts, i.e. meta-parameters both provided
|
||||||
|
# as kwargs and by the autotuner
|
||||||
|
conflicts = meta.keys() & config.kwargs.keys()
|
||||||
|
if conflicts:
|
||||||
|
raise ValueError(f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
||||||
|
" Make sure that you don't re-define auto-tuned symbols.")
|
||||||
|
# augment meta-parameters with tunable ones
|
||||||
|
current = dict(meta, **config.kwargs)
|
||||||
|
|
||||||
|
def kernel_call():
|
||||||
|
if config.pre_hook:
|
||||||
|
config.pre_hook(self.nargs)
|
||||||
|
self.hook(args)
|
||||||
|
self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
|
||||||
|
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
|
||||||
|
return triton.testing.do_bench(kernel_call, percentiles=(0.5, 0.2, 0.8), rep=40)
|
||||||
|
except triton.compiler.OutOfResources:
|
||||||
|
return (float('inf'), float('inf'), float('inf'))
|
||||||
|
|
||||||
|
def run(self, *args, **kwargs):
|
||||||
|
self.nargs = dict(zip(self.arg_names, args))
|
||||||
|
if len(self.configs) > 1:
|
||||||
|
key = tuple(args[i] for i in self.key_idx)
|
||||||
|
|
||||||
|
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
|
||||||
|
# In my testing this gives decent results, and greatly reduces the amount of tuning required
|
||||||
|
if self.nearest_power_of_two:
|
||||||
|
key = tuple([2**int(math.log2(x) + 0.5) for x in key])
|
||||||
|
|
||||||
|
if key not in self.cache:
|
||||||
|
# prune configs
|
||||||
|
pruned_configs = self.prune_configs(kwargs)
|
||||||
|
bench_start = time.time()
|
||||||
|
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
|
||||||
|
bench_end = time.time()
|
||||||
|
self.bench_time = bench_end - bench_start
|
||||||
|
self.cache[key] = builtins.min(timings, key=timings.get)
|
||||||
|
self.hook(args)
|
||||||
|
self.configs_timings = timings
|
||||||
|
config = self.cache[key]
|
||||||
|
else:
|
||||||
|
config = self.configs[0]
|
||||||
|
self.best_config = config
|
||||||
|
if config.pre_hook is not None:
|
||||||
|
config.pre_hook(self.nargs)
|
||||||
|
return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
|
||||||
|
|
||||||
|
def prune_configs(self, kwargs):
|
||||||
|
pruned_configs = self.configs
|
||||||
|
if self.early_config_prune:
|
||||||
|
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
||||||
|
if self.perf_model:
|
||||||
|
top_k = self.configs_top_k
|
||||||
|
if isinstance(top_k, float) and top_k <= 1.0:
|
||||||
|
top_k = int(len(self.configs) * top_k)
|
||||||
|
if len(pruned_configs) > top_k:
|
||||||
|
est_timing = {config: self.perf_model(**self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages, num_warps=config.num_warps) for config in pruned_configs}
|
||||||
|
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
|
||||||
|
return pruned_configs
|
||||||
|
|
||||||
|
def warmup(self, *args, **kwargs):
|
||||||
|
self.nargs = dict(zip(self.arg_names, args))
|
||||||
|
for config in self.prune_configs(kwargs):
|
||||||
|
self.fn.warmup(
|
||||||
|
*args,
|
||||||
|
num_warps=config.num_warps,
|
||||||
|
num_stages=config.num_stages,
|
||||||
|
**kwargs,
|
||||||
|
**config.kwargs,
|
||||||
|
)
|
||||||
|
self.nargs = None
|
||||||
|
|
||||||
|
|
||||||
|
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False):
|
||||||
|
"""
|
||||||
|
Decorator for auto-tuning a :code:`triton.jit`'d function.
|
||||||
|
.. highlight:: python
|
||||||
|
.. code-block:: python
|
||||||
|
@triton.autotune(configs=[
|
||||||
|
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
|
||||||
|
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
|
||||||
|
],
|
||||||
|
key=['x_size'] # the two above configs will be evaluated anytime
|
||||||
|
# the value of x_size changes
|
||||||
|
)
|
||||||
|
@triton.jit
|
||||||
|
def kernel(x_ptr, x_size, **META):
|
||||||
|
BLOCK_SIZE = META['BLOCK_SIZE']
|
||||||
|
:note: When all the configurations are evaluated, the kernel will run multiple time.
|
||||||
|
This means that whatever value the kernel updates will be updated multiple times.
|
||||||
|
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
|
||||||
|
reset the value of the provided tensor to `zero` before running any configuration.
|
||||||
|
:param configs: a list of :code:`triton.Config` objects
|
||||||
|
:type configs: list[triton.Config]
|
||||||
|
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
|
||||||
|
:type key: list[str]
|
||||||
|
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
||||||
|
'perf_model': performance model used to predicate running time with different configs, returns running time
|
||||||
|
'top_k': number of configs to bench
|
||||||
|
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
|
||||||
|
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
|
||||||
|
:type reset_to_zero: list[str]
|
||||||
|
"""
|
||||||
|
|
||||||
|
def decorator(fn):
|
||||||
|
return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two)
|
||||||
|
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
|
||||||
|
def matmul248_kernel_config_pruner(configs, nargs):
|
||||||
|
"""
|
||||||
|
The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller.
|
||||||
|
"""
|
||||||
|
m = max(2**int(math.ceil(math.log2(nargs['M']))), 16)
|
||||||
|
n = max(2**int(math.ceil(math.log2(nargs['N']))), 16)
|
||||||
|
k = max(2**int(math.ceil(math.log2(nargs['K']))), 16)
|
||||||
|
|
||||||
|
used = set()
|
||||||
|
for config in configs:
|
||||||
|
block_size_m = min(m, config.kwargs['BLOCK_SIZE_M'])
|
||||||
|
block_size_n = min(n, config.kwargs['BLOCK_SIZE_N'])
|
||||||
|
block_size_k = min(k, config.kwargs['BLOCK_SIZE_K'])
|
||||||
|
group_size_m = config.kwargs['GROUP_SIZE_M']
|
||||||
|
|
||||||
|
if (block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps) in used:
|
||||||
|
continue
|
||||||
|
|
||||||
|
used.add((block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps))
|
||||||
|
yield triton.Config({
|
||||||
|
'BLOCK_SIZE_M': block_size_m,
|
||||||
|
'BLOCK_SIZE_N': block_size_n,
|
||||||
|
'BLOCK_SIZE_K': block_size_k,
|
||||||
|
'GROUP_SIZE_M': group_size_m
|
||||||
|
},
|
||||||
|
num_stages=config.num_stages,
|
||||||
|
num_warps=config.num_warps)
|
|
@ -0,0 +1,104 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import transformers
|
||||||
|
import math
|
||||||
|
from texttable import Texttable
|
||||||
|
from mmrazor.implementations.pruning.sparse_gpt import SparseGptMixIn
|
||||||
|
from mmrazor.implementations.pruning.sparse_gpt.utils import torch_setting
|
||||||
|
|
||||||
|
class GPTQMixIn(SparseGptMixIn):
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def quant(self,
|
||||||
|
quantizer,
|
||||||
|
blocksize=128,
|
||||||
|
percdamp=0.01,
|
||||||
|
groupsize=-1,
|
||||||
|
actorder=False):
|
||||||
|
with torch_setting(dtype=torch.float):
|
||||||
|
assert self.hessian is not None
|
||||||
|
W: torch.Tensor = self.weight_matrix.float() # out in
|
||||||
|
H = self.hessian.float().to(W.device)
|
||||||
|
dead = torch.diag(H) == 0
|
||||||
|
H[dead, dead] = 1
|
||||||
|
W[:, dead] = 0
|
||||||
|
|
||||||
|
if actorder:
|
||||||
|
perm = torch.argsort(torch.diag(H), descending=True)
|
||||||
|
W = W[:, perm]
|
||||||
|
H = H[perm][:, perm]
|
||||||
|
|
||||||
|
Losses = torch.zeros_like(W)
|
||||||
|
Q = torch.zeros_like(W)
|
||||||
|
|
||||||
|
damp = percdamp * torch.mean(torch.diag(H))
|
||||||
|
diag = torch.arange(self.columns, device=self.dev)
|
||||||
|
H[diag, diag] += damp
|
||||||
|
H = torch.linalg.cholesky(H)
|
||||||
|
H = torch.cholesky_inverse(H)
|
||||||
|
H = torch.linalg.cholesky(H, upper=True)
|
||||||
|
Hinv = H
|
||||||
|
|
||||||
|
g_idx = []
|
||||||
|
scale = []
|
||||||
|
zero = []
|
||||||
|
now_idx = 1
|
||||||
|
|
||||||
|
for i1 in range(0, self.columns, blocksize):
|
||||||
|
i2 = min(i1 + blocksize, self.columns)
|
||||||
|
count = i2 - i1
|
||||||
|
|
||||||
|
W1 = W[:, i1:i2].clone()
|
||||||
|
Q1 = torch.zeros_like(W1)
|
||||||
|
Err1 = torch.zeros_like(W1)
|
||||||
|
Losses1 = torch.zeros_like(W1)
|
||||||
|
Hinv1 = Hinv[i1:i2, i1:i2]
|
||||||
|
|
||||||
|
for i in range(count):
|
||||||
|
w = W1[:, i]
|
||||||
|
d = Hinv1[i, i]
|
||||||
|
|
||||||
|
if groupsize != -1:
|
||||||
|
if (i1 + i) % groupsize == 0:
|
||||||
|
quantizer.find_params(W[:, (i1 + i):(i1 + i + groupsize)], weight=True)
|
||||||
|
|
||||||
|
if ((i1 + i) // groupsize) - now_idx == -1:
|
||||||
|
scale.append(quantizer.scale)
|
||||||
|
zero.append(quantizer.zero)
|
||||||
|
now_idx += 1
|
||||||
|
|
||||||
|
q = quantizer.quantize(w.unsqueeze(1)).flatten()
|
||||||
|
Q1[:, i] = q
|
||||||
|
Losses1[:, i] = (w - q)**2 / d**2
|
||||||
|
|
||||||
|
err1 = (w - q) / d
|
||||||
|
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
|
||||||
|
Err1[:, i] = err1
|
||||||
|
|
||||||
|
Q[:, i1:i2] = Q1
|
||||||
|
Losses[:, i1:i2] = Losses1 / 2
|
||||||
|
|
||||||
|
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
|
||||||
|
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
error = torch.sum(Losses).item()
|
||||||
|
|
||||||
|
groupsize = groupsize if groupsize != -1 else self.columns
|
||||||
|
g_idx = [i // groupsize for i in range(self.columns)]
|
||||||
|
g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device)
|
||||||
|
if actorder:
|
||||||
|
invperm = torch.argsort(perm)
|
||||||
|
Q = Q[:, invperm]
|
||||||
|
g_idx = g_idx[invperm]
|
||||||
|
|
||||||
|
# if isinstance(self.layer, transformers.Conv1D):
|
||||||
|
# Q = Q.t()
|
||||||
|
|
||||||
|
# self.print_loss(name=name, q_weight=Q, weight_error=error, timecost=(time.time() - tick))
|
||||||
|
|
||||||
|
if scale == []:
|
||||||
|
scale.append(quantizer.scale)
|
||||||
|
zero.append(quantizer.zero)
|
||||||
|
scale = torch.cat(scale, dim=1)
|
||||||
|
zero = torch.cat(zero, dim=1)
|
||||||
|
return scale, zero, g_idx, error
|
|
@ -0,0 +1,450 @@
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||||
|
from torch import Tensor
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from mmrazor.models.architectures.dynamic_ops import (DynamicConv2d,
|
||||||
|
DynamicLinear)
|
||||||
|
from .gptq import GPTQMixIn
|
||||||
|
|
||||||
|
try:
|
||||||
|
import triton
|
||||||
|
import triton.language as tl
|
||||||
|
from . import custom_autotune
|
||||||
|
|
||||||
|
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||||
|
@custom_autotune.autotune(
|
||||||
|
configs=[
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 256,
|
||||||
|
'BLOCK_SIZE_K': 32,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 128,
|
||||||
|
'BLOCK_SIZE_N': 128,
|
||||||
|
'BLOCK_SIZE_K': 32,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 128,
|
||||||
|
'BLOCK_SIZE_K': 32,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 128,
|
||||||
|
'BLOCK_SIZE_N': 32,
|
||||||
|
'BLOCK_SIZE_K': 32,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 64,
|
||||||
|
'BLOCK_SIZE_K': 32,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 128,
|
||||||
|
'BLOCK_SIZE_K': 32,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=2, num_warps=8),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 64,
|
||||||
|
'BLOCK_SIZE_K': 64,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=3, num_warps=8),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 32,
|
||||||
|
'BLOCK_SIZE_N': 32,
|
||||||
|
'BLOCK_SIZE_K': 128,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=2, num_warps=4),
|
||||||
|
],
|
||||||
|
key=['M', 'N', 'K'],
|
||||||
|
nearest_power_of_two=True,
|
||||||
|
prune_configs_by={
|
||||||
|
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
|
||||||
|
'perf_model': None,
|
||||||
|
'top_k': None,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
@triton.jit
|
||||||
|
def matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, stride_zeros,
|
||||||
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
|
||||||
|
"""
|
||||||
|
Compute the matrix multiplication C = A x B.
|
||||||
|
A is of shape (M, K) float16
|
||||||
|
B is of shape (K//8, N) int32
|
||||||
|
C is of shape (M, N) float16
|
||||||
|
scales is of shape (G, N) float16
|
||||||
|
zeros is of shape (G, N) float16
|
||||||
|
g_ptr is of shape (K) int32
|
||||||
|
"""
|
||||||
|
infearure_per_bits = 32 // bits
|
||||||
|
|
||||||
|
pid = tl.program_id(axis=0)
|
||||||
|
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||||
|
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||||
|
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||||
|
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||||
|
group_id = pid // num_pid_in_group
|
||||||
|
first_pid_m = group_id * GROUP_SIZE_M
|
||||||
|
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||||
|
pid_m = first_pid_m + (pid % group_size_m)
|
||||||
|
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||||
|
|
||||||
|
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||||
|
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||||
|
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||||
|
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||||
|
a_mask = (offs_am[:, None] < M)
|
||||||
|
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||||
|
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||||
|
g_ptrs = g_ptr + offs_k
|
||||||
|
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||||
|
scales_ptrs = scales_ptr + offs_bn[None, :]
|
||||||
|
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
|
||||||
|
|
||||||
|
shifter = (offs_k % infearure_per_bits) * bits
|
||||||
|
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||||
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||||
|
|
||||||
|
for k in range(0, num_pid_k):
|
||||||
|
g_idx = tl.load(g_ptrs)
|
||||||
|
|
||||||
|
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||||
|
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||||
|
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||||
|
|
||||||
|
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||||
|
zeros = (zeros + 1)
|
||||||
|
|
||||||
|
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||||
|
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||||
|
|
||||||
|
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||||
|
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||||
|
b = (b - zeros) * scales # Scale and shift
|
||||||
|
|
||||||
|
accumulator += tl.dot(a, b)
|
||||||
|
a_ptrs += BLOCK_SIZE_K
|
||||||
|
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||||
|
g_ptrs += BLOCK_SIZE_K
|
||||||
|
|
||||||
|
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||||
|
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||||
|
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||||
|
|
||||||
|
@custom_autotune.autotune(configs=[
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 32,
|
||||||
|
'BLOCK_SIZE_K': 256,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 128,
|
||||||
|
'BLOCK_SIZE_N': 32,
|
||||||
|
'BLOCK_SIZE_K': 128,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 32,
|
||||||
|
'BLOCK_SIZE_K': 128,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 128,
|
||||||
|
'BLOCK_SIZE_N': 32,
|
||||||
|
'BLOCK_SIZE_K': 32,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 32,
|
||||||
|
'BLOCK_SIZE_K': 64,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=4, num_warps=4),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 32,
|
||||||
|
'BLOCK_SIZE_K': 128,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=2, num_warps=8),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 64,
|
||||||
|
'BLOCK_SIZE_N': 64,
|
||||||
|
'BLOCK_SIZE_K': 64,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=3, num_warps=8),
|
||||||
|
triton.Config({
|
||||||
|
'BLOCK_SIZE_M': 32,
|
||||||
|
'BLOCK_SIZE_N': 128,
|
||||||
|
'BLOCK_SIZE_K': 32,
|
||||||
|
'GROUP_SIZE_M': 8
|
||||||
|
}, num_stages=2, num_warps=4),
|
||||||
|
],
|
||||||
|
key=['M', 'N', 'K'],
|
||||||
|
nearest_power_of_two=True)
|
||||||
|
@triton.jit
|
||||||
|
def transpose_matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales,
|
||||||
|
stride_zeros, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
|
||||||
|
"""
|
||||||
|
Compute the matrix multiplication C = A x B.
|
||||||
|
A is of shape (M, N) float16
|
||||||
|
B is of shape (K//8, N) int32
|
||||||
|
C is of shape (M, K) float16
|
||||||
|
scales is of shape (G, N) float16
|
||||||
|
zeros is of shape (G, N) float16
|
||||||
|
g_ptr is of shape (K) int32
|
||||||
|
"""
|
||||||
|
infearure_per_bits = 32 // bits
|
||||||
|
|
||||||
|
pid = tl.program_id(axis=0)
|
||||||
|
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||||
|
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||||
|
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||||
|
num_pid_in_group = GROUP_SIZE_M * num_pid_k
|
||||||
|
group_id = pid // num_pid_in_group
|
||||||
|
first_pid_m = group_id * GROUP_SIZE_M
|
||||||
|
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||||
|
pid_m = first_pid_m + (pid % group_size_m)
|
||||||
|
pid_k = (pid % num_pid_in_group) // group_size_m
|
||||||
|
|
||||||
|
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||||
|
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
|
||||||
|
offs_n = tl.arange(0, BLOCK_SIZE_N)
|
||||||
|
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||||
|
a_mask = (offs_am[:, None] < M)
|
||||||
|
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||||
|
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||||
|
g_ptrs = g_ptr + offs_bk
|
||||||
|
g_idx = tl.load(g_ptrs)
|
||||||
|
|
||||||
|
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||||
|
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
|
||||||
|
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
|
||||||
|
|
||||||
|
shifter = (offs_bk % infearure_per_bits) * bits
|
||||||
|
zeros_shifter = (offs_n % infearure_per_bits) * bits
|
||||||
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
|
||||||
|
|
||||||
|
for k in range(0, num_pid_n):
|
||||||
|
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||||
|
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||||
|
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||||
|
|
||||||
|
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||||
|
zeros = (zeros + 1)
|
||||||
|
|
||||||
|
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||||
|
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||||
|
|
||||||
|
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||||
|
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||||
|
b = (b - zeros) * scales # Scale and shift
|
||||||
|
b = tl.trans(b)
|
||||||
|
|
||||||
|
accumulator += tl.dot(a, b)
|
||||||
|
a_ptrs += BLOCK_SIZE_N
|
||||||
|
b_ptrs += BLOCK_SIZE_N
|
||||||
|
scales_ptrs += BLOCK_SIZE_N
|
||||||
|
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
|
||||||
|
|
||||||
|
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
|
||||||
|
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
|
||||||
|
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||||
|
except:
|
||||||
|
print('trioton not installed.')
|
||||||
|
|
||||||
|
|
||||||
|
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||||
|
with torch.cuda.device(input.device):
|
||||||
|
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
|
||||||
|
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']), )
|
||||||
|
matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, input.stride(0), input.stride(1), qweight.stride(0),
|
||||||
|
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0))
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||||
|
with torch.cuda.device(input.device):
|
||||||
|
output_dim = (qweight.shape[0] * 32) // bits
|
||||||
|
output = torch.empty((input.shape[0], output_dim), device='cuda', dtype=torch.float16)
|
||||||
|
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']), )
|
||||||
|
transpose_matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], output_dim, bits, maxq, input.stride(0), input.stride(1), qweight.stride(0),
|
||||||
|
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0))
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class QuantLinearFunction(torch.autograd.Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@custom_fwd(cast_inputs=torch.float16)
|
||||||
|
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||||
|
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||||
|
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
|
||||||
|
ctx.bits, ctx.maxq = bits, maxq
|
||||||
|
return output
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@custom_bwd
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
qweight, scales, qzeros, g_idx = ctx.saved_tensors
|
||||||
|
bits, maxq = ctx.bits, ctx.maxq
|
||||||
|
grad_input = None
|
||||||
|
|
||||||
|
if ctx.needs_input_grad[0]:
|
||||||
|
grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||||
|
return grad_input, None, None, None, None, None, None
|
||||||
|
|
||||||
|
class QuantLinear(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, bits, groupsize, infeatures, outfeatures, bias):
|
||||||
|
super().__init__()
|
||||||
|
if bits not in [2, 4, 8]:
|
||||||
|
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||||
|
self.infeatures = infeatures
|
||||||
|
self.outfeatures = outfeatures
|
||||||
|
self.bits = bits
|
||||||
|
self.maxq = 2**self.bits - 1
|
||||||
|
self.groupsize = groupsize if groupsize != -1 else infeatures
|
||||||
|
self.no_group = math.ceil(infeatures / self.groupsize) == 1
|
||||||
|
|
||||||
|
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
|
||||||
|
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
|
||||||
|
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
|
||||||
|
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
|
||||||
|
if bias:
|
||||||
|
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
||||||
|
else:
|
||||||
|
self.bias = None
|
||||||
|
|
||||||
|
def pack(self, linear, scales, zeros, g_idx=None):
|
||||||
|
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
|
||||||
|
|
||||||
|
scales = scales.t().contiguous()
|
||||||
|
zeros = zeros.t().contiguous()
|
||||||
|
scale_zeros = zeros * scales
|
||||||
|
self.scales = scales.clone().half()
|
||||||
|
if linear.bias is not None:
|
||||||
|
self.bias = linear.bias.clone().half()
|
||||||
|
|
||||||
|
intweight = []
|
||||||
|
for idx in range(self.infeatures):
|
||||||
|
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:, None])
|
||||||
|
intweight = torch.cat(intweight, dim=1)
|
||||||
|
intweight = intweight.t().contiguous()
|
||||||
|
intweight = intweight.numpy().astype(np.uint32)
|
||||||
|
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
|
||||||
|
i = 0
|
||||||
|
row = 0
|
||||||
|
while row < qweight.shape[0]:
|
||||||
|
if self.bits in [2, 4, 8]:
|
||||||
|
for j in range(i, i + (32 // self.bits)):
|
||||||
|
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
||||||
|
i += 32 // self.bits
|
||||||
|
row += 1
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||||
|
|
||||||
|
qweight = qweight.astype(np.int32)
|
||||||
|
self.qweight = torch.from_numpy(qweight)
|
||||||
|
|
||||||
|
zeros -= 1
|
||||||
|
zeros = zeros.numpy().astype(np.uint32)
|
||||||
|
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
|
||||||
|
i = 0
|
||||||
|
col = 0
|
||||||
|
while col < qzeros.shape[1]:
|
||||||
|
if self.bits in [2, 4, 8]:
|
||||||
|
for j in range(i, i + (32 // self.bits)):
|
||||||
|
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
||||||
|
i += 32 // self.bits
|
||||||
|
col += 1
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||||
|
|
||||||
|
qzeros = qzeros.astype(np.int32)
|
||||||
|
self.qzeros = torch.from_numpy(qzeros)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out_shape = x.shape[:-1] + (self.outfeatures, )
|
||||||
|
out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq, self.no_group)
|
||||||
|
out = out + self.bias if self.bias is not None else out
|
||||||
|
return out.reshape(out_shape)
|
||||||
|
|
||||||
|
class GPTQLinear(DynamicLinear, GPTQMixIn):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
custom_kernel=True,
|
||||||
|
bits=8,
|
||||||
|
groupsize=128,
|
||||||
|
*args,
|
||||||
|
**kwargs) -> None:
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.custom_kernel = custom_kernel
|
||||||
|
self.bits = bits
|
||||||
|
self.groupsize = groupsize
|
||||||
|
self._sparse_gpt_mix_in_init()
|
||||||
|
|
||||||
|
def convert_from(self, module: nn.Linear):
|
||||||
|
if not self.custom_kernel:
|
||||||
|
new_module = super().convert_from(module)
|
||||||
|
else:
|
||||||
|
new_module = QuantLinear(
|
||||||
|
self.bits,
|
||||||
|
self.groupsize,
|
||||||
|
module.in_features,
|
||||||
|
module.out_features,
|
||||||
|
module.bias is not None)
|
||||||
|
|
||||||
|
new_module.load_state_dict(module.state_dict(), strict=False)
|
||||||
|
dtype = next(module.parameters()).dtype
|
||||||
|
new_module = new_module.to(dtype)
|
||||||
|
|
||||||
|
return new_module
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
if not self.custom_kernel:
|
||||||
|
return super().forward(input)
|
||||||
|
else:
|
||||||
|
return QuantLinear(input)
|
||||||
|
|
||||||
|
|
||||||
|
class GPTQConv2d(DynamicConv2d, GPTQMixIn):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
bits=8,
|
||||||
|
groupsize=128,
|
||||||
|
*args,
|
||||||
|
**kwargs) -> None:
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.bits = bits
|
||||||
|
self.groupsize = groupsize
|
||||||
|
self._sparse_gpt_mix_in_init()
|
||||||
|
|
||||||
|
def convert_from(self, module: nn.Conv2d):
|
||||||
|
new_module = super().convert_from(module)
|
||||||
|
new_module.load_state_dict(module.state_dict(), strict=False)
|
||||||
|
|
||||||
|
dtype = next(module.parameters()).dtype
|
||||||
|
new_module = new_module.to(dtype)
|
||||||
|
|
||||||
|
return new_module
|
||||||
|
|
||||||
|
def format_input(self, input: torch.Tensor):
|
||||||
|
# input B C H W
|
||||||
|
input = F.unfold(
|
||||||
|
input, self.kernel_size, padding=self.padding,
|
||||||
|
stride=self.stride) # B C D
|
||||||
|
return input.transpose(-1, -2)
|
||||||
|
|
|
@ -0,0 +1,127 @@
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
class Quantizer(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, shape=1):
|
||||||
|
super(Quantizer, self).__init__()
|
||||||
|
self.register_buffer('maxq', torch.tensor(0))
|
||||||
|
self.register_buffer('scale', torch.zeros(shape))
|
||||||
|
self.register_buffer('zero', torch.zeros(shape))
|
||||||
|
|
||||||
|
def configure(self, bits, perchannel=False, sym=True, mse=False, norm=2.4, grid=100, maxshrink=.8, trits=False):
|
||||||
|
|
||||||
|
self.maxq = torch.tensor(2**bits - 1)
|
||||||
|
self.perchannel = perchannel
|
||||||
|
self.sym = sym
|
||||||
|
self.mse = mse
|
||||||
|
self.norm = norm
|
||||||
|
self.grid = grid
|
||||||
|
self.maxshrink = maxshrink
|
||||||
|
if trits:
|
||||||
|
self.maxq = torch.tensor(-1)
|
||||||
|
self.scale = torch.zeros_like(self.scale)
|
||||||
|
|
||||||
|
def _quantize(self, x, scale, zero, maxq):
|
||||||
|
if maxq < 0:
|
||||||
|
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero
|
||||||
|
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
|
||||||
|
return scale * (q - zero)
|
||||||
|
|
||||||
|
def find_params(self, x, weight=False):
|
||||||
|
dev = x.device
|
||||||
|
self.maxq = self.maxq.to(dev)
|
||||||
|
|
||||||
|
shape = x.shape
|
||||||
|
if self.perchannel:
|
||||||
|
if weight:
|
||||||
|
x = x.flatten(1)
|
||||||
|
else:
|
||||||
|
if len(shape) == 4:
|
||||||
|
x = x.permute([1, 0, 2, 3])
|
||||||
|
x = x.flatten(1)
|
||||||
|
if len(shape) == 3:
|
||||||
|
x = x.reshape((-1, shape[-1])).t()
|
||||||
|
if len(shape) == 2:
|
||||||
|
x = x.t()
|
||||||
|
else:
|
||||||
|
x = x.flatten().unsqueeze(0)
|
||||||
|
|
||||||
|
tmp = torch.zeros(x.shape[0], device=dev)
|
||||||
|
xmin = torch.minimum(x.min(1)[0], tmp)
|
||||||
|
xmax = torch.maximum(x.max(1)[0], tmp)
|
||||||
|
|
||||||
|
if self.sym:
|
||||||
|
xmax = torch.maximum(torch.abs(xmin), xmax)
|
||||||
|
tmp = xmin < 0
|
||||||
|
if torch.any(tmp):
|
||||||
|
xmin[tmp] = -xmax[tmp]
|
||||||
|
tmp = (xmin == 0) & (xmax == 0)
|
||||||
|
xmin[tmp] = -1
|
||||||
|
xmax[tmp] = +1
|
||||||
|
|
||||||
|
if self.maxq < 0:
|
||||||
|
self.scale = xmax
|
||||||
|
self.zero = xmin
|
||||||
|
else:
|
||||||
|
self.scale = (xmax - xmin) / self.maxq
|
||||||
|
if self.sym:
|
||||||
|
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
|
||||||
|
else:
|
||||||
|
self.zero = torch.round(-xmin / self.scale)
|
||||||
|
|
||||||
|
if self.mse:
|
||||||
|
best = torch.full([x.shape[0]], float('inf'), device=dev)
|
||||||
|
for i in range(int(self.maxshrink * self.grid)):
|
||||||
|
p = 1 - i / self.grid
|
||||||
|
xmin1 = p * xmin
|
||||||
|
xmax1 = p * xmax
|
||||||
|
scale1 = (xmax1 - xmin1) / self.maxq
|
||||||
|
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
|
||||||
|
q = self._quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
|
||||||
|
q -= x
|
||||||
|
q.abs_()
|
||||||
|
q.pow_(self.norm)
|
||||||
|
err = torch.sum(q, 1)
|
||||||
|
tmp = err < best
|
||||||
|
if torch.any(tmp):
|
||||||
|
best[tmp] = err[tmp]
|
||||||
|
self.scale[tmp] = scale1[tmp]
|
||||||
|
self.zero[tmp] = zero1[tmp]
|
||||||
|
if not self.perchannel:
|
||||||
|
if weight:
|
||||||
|
tmp = shape[0]
|
||||||
|
else:
|
||||||
|
tmp = shape[1] if len(shape) != 3 else shape[2]
|
||||||
|
self.scale = self.scale.repeat(tmp)
|
||||||
|
self.zero = self.zero.repeat(tmp)
|
||||||
|
|
||||||
|
if weight:
|
||||||
|
shape = [-1] + [1] * (len(shape) - 1)
|
||||||
|
self.scale = self.scale.reshape(shape)
|
||||||
|
self.zero = self.zero.reshape(shape)
|
||||||
|
return
|
||||||
|
if len(shape) == 4:
|
||||||
|
self.scale = self.scale.reshape((1, -1, 1, 1))
|
||||||
|
self.zero = self.zero.reshape((1, -1, 1, 1))
|
||||||
|
if len(shape) == 3:
|
||||||
|
self.scale = self.scale.reshape((1, 1, -1))
|
||||||
|
self.zero = self.zero.reshape((1, 1, -1))
|
||||||
|
if len(shape) == 2:
|
||||||
|
self.scale = self.scale.unsqueeze(0)
|
||||||
|
self.zero = self.zero.unsqueeze(0)
|
||||||
|
|
||||||
|
def quantize(self, x):
|
||||||
|
if self.ready():
|
||||||
|
return self._quantize(x, self.scale, self.zero, self.maxq)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def enabled(self):
|
||||||
|
return self.maxq > 0
|
||||||
|
|
||||||
|
def ready(self):
|
||||||
|
return torch.all(self.scale != 0)
|
Loading…
Reference in New Issue