mmrazor/tests/test_runners/test_evolution_search_loop.py
Yang Gao 18fc50f7bc
[Feature] Add performance predictor (#306)
* add predictor with 4 handlers

* [Improvement] Update Candidate with multi-dim search constraints. (#322)

* update doc

* add support type

* clean code

* update candidates

* clean

* xx

* set_resource -> set_score

* fix ci bug

* py36 lint

* fix bug

* fix check constrain

* py36 ci

* redesign candidate

* fix pre-commit

* update cfg

* add build_resource_estimator

* fix ci bug

* remove runner.epoch in testcase

* update metric_predictor:
1. update MetricPredictor;
2. add predictor config for searching;
3. add predictor in evolution_search_loop.

* add UT for predictor

* add MLPHandler

* patch optional.txt for predictors

* patch test_evolution_search_loop

* refactor apis of predictor and handlers

* fix ut and remove predictor_cfg in predictor

* adapt new mutable & mutator design

* fix ut

* remove unness assert after rebase

* move predictor-build in __init__ & simplify estimator-build

Co-authored-by: Yue Sun <aptsunny@tongji.edu.cn>
2022-11-14 17:09:32 +08:00

378 lines
14 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import MagicMock, patch
import torch
import torch.nn as nn
from mmengine import fileio
from mmengine.config import Config
from torch.utils.data import DataLoader, Dataset
from mmrazor.engine import EvolutionSearchLoop
from mmrazor.models import OneShotMutableOP
from mmrazor.registry import LOOPS
from mmrazor.structures import Candidates
def collate_fn(data_batch):
return data_batch
class ToyDataset(Dataset):
METAINFO = dict() # type: ignore
data = torch.randn(12, 2)
label = torch.ones(12)
@property
def metainfo(self):
return self.METAINFO
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
return dict(inputs=self.data[index], data_sample=self.label[index])
class ToyRunner:
@property
def distributed(self):
pass
@property
def rank(self):
pass
@property
def epoch(self):
pass
@property
def work_dir(self):
pass
def model(self):
return nn.Conv2d
def logger(self):
pass
def call_hook(self, fn_name: str):
pass
def visualizer(self):
pass
class TestEvolutionSearchLoop(TestCase):
def setUp(self):
self.temp_dir = tempfile.mkdtemp()
train_cfg = dict(
type='EvolutionSearchLoop',
max_epochs=4,
max_keep_ckpts=3,
resume_from=None,
num_candidates=4,
top_k=2,
num_mutation=2,
num_crossover=2,
mutate_prob=0.1,
constraints_range=dict(flops=(0, 330)),
score_key='coco/bbox_mAP')
self.train_cfg = Config(train_cfg)
self.runner = MagicMock(spec=ToyRunner)
self.dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn)
self.evaluator = MagicMock()
def tearDown(self):
shutil.rmtree(self.temp_dir)
def test_init(self):
# test_init: dataloader and evaluator are instances
loop_cfg = copy.deepcopy(self.train_cfg)
loop_cfg.runner = self.runner
loop_cfg.dataloader = self.dataloader
loop_cfg.evaluator = self.evaluator
loop = LOOPS.build(loop_cfg)
self.assertIsInstance(loop, EvolutionSearchLoop)
# test init_candidates is not None
fake_subnet = {'1': 'choice1', '2': 'choice2'}
fake_candidates = Candidates(fake_subnet)
init_candidates_path = os.path.join(self.temp_dir, 'candidates.yaml')
fileio.dump(fake_candidates, init_candidates_path)
loop_cfg.init_candidates = init_candidates_path
loop = LOOPS.build(loop_cfg)
self.assertIsInstance(loop, EvolutionSearchLoop)
self.assertEqual(loop.candidates, fake_candidates)
@patch('mmrazor.engine.runner.utils.check.load_fix_subnet')
@patch('mmrazor.engine.runner.utils.check.export_fix_subnet')
@patch('mmrazor.models.task_modules.estimators.resource_estimator.'
'get_model_flops_params')
def test_run_epoch(self, flops_params, mock_export_fix_subnet,
load_status):
# test_run_epoch: distributed == False
loop_cfg = copy.deepcopy(self.train_cfg)
loop_cfg.runner = self.runner
loop_cfg.dataloader = self.dataloader
loop_cfg.evaluator = self.evaluator
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
self.runner.distributed = False
self.runner.work_dir = self.temp_dir
fake_subnet = {'1': 'choice1', '2': 'choice2'}
loop.model.sample_subnet = MagicMock(return_value=fake_subnet)
load_status.return_value = True
flops_params.return_value = 0, 0
loop.run_epoch()
self.assertEqual(len(loop.candidates), 4)
self.assertEqual(len(loop.top_k_candidates), 2)
self.assertEqual(loop._epoch, 1)
# test_run_epoch: distributed == True
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
self.runner.distributed = True
self.runner.work_dir = self.temp_dir
fake_subnet = {'1': 'choice1', '2': 'choice2'}
self.runner.model.sample_subnet = MagicMock(return_value=fake_subnet)
loop.run_epoch()
self.assertEqual(len(loop.candidates), 4)
self.assertEqual(len(loop.top_k_candidates), 2)
self.assertEqual(loop._epoch, 1)
# test_check_constraints
loop_cfg.constraints_range = dict(params=(0, 100))
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
self.runner.distributed = True
self.runner.work_dir = self.temp_dir
fake_subnet = {'1': 'choice1', '2': 'choice2'}
loop.model.sample_subnet = MagicMock(return_value=fake_subnet)
flops_params.return_value = (50., 1)
mock_export_fix_subnet.return_value = fake_subnet
loop.run_epoch()
self.assertEqual(len(loop.candidates), 4)
self.assertEqual(len(loop.top_k_candidates), 2)
self.assertEqual(loop._epoch, 1)
@patch('mmrazor.engine.runner.utils.check.export_fix_subnet')
@patch('mmrazor.models.task_modules.estimators.resource_estimator.'
'get_model_flops_params')
def test_run_loop(self, mock_flops, mock_export_fix_subnet):
# test a new search: resume == None
loop_cfg = copy.deepcopy(self.train_cfg)
loop_cfg.runner = self.runner
loop_cfg.dataloader = self.dataloader
loop_cfg.evaluator = self.evaluator
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
loop._epoch = 1
fake_subnet = {'1': 'choice1', '2': 'choice2'}
self.runner.work_dir = self.temp_dir
loop.update_candidate_pool = MagicMock()
loop.val_candidate_pool = MagicMock()
mutation_candidates = Candidates([fake_subnet] * loop.num_mutation)
for i in range(loop.num_mutation):
mutation_candidates.set_resource(i, 0.1 + 0.1 * i, 'flops')
mutation_candidates.set_resource(i, 99 + i, 'score')
crossover_candidates = Candidates([fake_subnet] * loop.num_crossover)
for i in range(loop.num_crossover):
crossover_candidates.set_resource(i, 0.1 + 0.1 * i, 'flops')
crossover_candidates.set_resource(i, 99 + i, 'score')
loop.gen_mutation_candidates = \
MagicMock(return_value=mutation_candidates)
loop.gen_crossover_candidates = \
MagicMock(return_value=crossover_candidates)
loop.candidates = Candidates([fake_subnet] * 4)
mock_flops.return_value = (0.5, 101)
mock_export_fix_subnet.return_value = fake_subnet
loop.run()
assert os.path.exists(
os.path.join(self.temp_dir, 'best_fix_subnet.yaml'))
self.assertEqual(loop._epoch, loop._max_epochs)
assert os.path.exists(
os.path.join(self.temp_dir,
f'search_epoch_{loop._max_epochs-1}.pkl'))
# test resuming search
loop_cfg.resume_from = os.path.join(
self.temp_dir, f'search_epoch_{loop._max_epochs-1}.pkl')
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
loop.run()
self.assertEqual(loop._max_epochs, 1)
class TestEvolutionSearchLoopWithPredictor(TestCase):
def setUp(self):
self.temp_dir = tempfile.mkdtemp()
convs = nn.ModuleDict({
'conv1': nn.Conv2d(3, 8, 1),
'conv2': nn.Conv2d(3, 8, 1),
'conv3': nn.Conv2d(3, 8, 1),
})
MutableOP = OneShotMutableOP(convs)
self.search_groups = {0: [MutableOP], 1: [MutableOP]}
train_cfg = dict(
type='EvolutionSearchLoop',
max_epochs=4,
max_keep_ckpts=3,
resume_from=None,
num_candidates=4,
top_k=2,
num_mutation=2,
num_crossover=2,
mutate_prob=0.1,
constraints_range=dict(flops=(0, 330)),
score_key='bbox_mAP',
predictor_cfg=dict(
type='MetricPredictor',
handler_cfg=dict(type='GaussProcessHandler'),
search_groups=self.search_groups,
train_samples=4,
))
self.train_cfg = Config(train_cfg)
self.runner = MagicMock(spec=ToyRunner)
self.dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn)
self.evaluator = MagicMock()
def tearDown(self):
shutil.rmtree(self.temp_dir)
def test_init(self):
# test_init: dataloader and evaluator are instances
loop_cfg = copy.deepcopy(self.train_cfg)
loop_cfg.runner = self.runner
loop_cfg.dataloader = self.dataloader
loop_cfg.evaluator = self.evaluator
loop = LOOPS.build(loop_cfg)
self.assertIsInstance(loop, EvolutionSearchLoop)
# test init_candidates is not None
fake_subnet = {'1': 'choice1', '2': 'choice2'}
fake_candidates = Candidates(fake_subnet)
init_candidates_path = os.path.join(self.temp_dir, 'candidates.yaml')
fileio.dump(fake_candidates, init_candidates_path)
loop_cfg.init_candidates = init_candidates_path
loop = LOOPS.build(loop_cfg)
self.assertIsInstance(loop, EvolutionSearchLoop)
self.assertEqual(loop.candidates, fake_candidates)
@patch('mmrazor.engine.runner.utils.check.load_fix_subnet')
@patch('mmrazor.engine.runner.utils.check.export_fix_subnet')
@patch('mmrazor.models.task_modules.estimators.resource_estimator.'
'get_model_flops_params')
def test_run_epoch(self, flops_params, mock_export_fix_subnet,
load_status):
# test_run_epoch: distributed == False
loop_cfg = copy.deepcopy(self.train_cfg)
loop_cfg.runner = self.runner
loop_cfg.dataloader = self.dataloader
loop_cfg.evaluator = self.evaluator
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
self.runner.distributed = False
self.runner.work_dir = self.temp_dir
fake_subnet = {'1': 'choice1', '2': 'choice2'}
loop.model.sample_subnet = MagicMock(return_value=fake_subnet)
load_status.return_value = True
flops_params.return_value = 0, 0
loop.run_epoch()
self.assertEqual(len(loop.candidates), 4)
self.assertEqual(len(loop.top_k_candidates), 2)
self.assertEqual(loop._epoch, 1)
# test_run_epoch: distributed == True
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
self.runner.distributed = True
self.runner.work_dir = self.temp_dir
fake_subnet = {'1': 'choice1', '2': 'choice2'}
self.runner.model.sample_subnet = MagicMock(return_value=fake_subnet)
loop.run_epoch()
self.assertEqual(len(loop.candidates), 4)
self.assertEqual(len(loop.top_k_candidates), 2)
self.assertEqual(loop._epoch, 1)
# test_check_constraints
loop_cfg.constraints_range = dict(params=(0, 100))
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
self.runner.distributed = True
self.runner.work_dir = self.temp_dir
fake_subnet = {'1': 'choice1', '2': 'choice2'}
loop.model.sample_subnet = MagicMock(return_value=fake_subnet)
flops_params.return_value = (50., 1)
mock_export_fix_subnet.return_value = fake_subnet
loop.run_epoch()
self.assertEqual(len(loop.candidates), 4)
self.assertEqual(len(loop.top_k_candidates), 2)
self.assertEqual(loop._epoch, 1)
@patch('mmrazor.engine.runner.utils.check.export_fix_subnet')
@patch('mmrazor.models.task_modules.predictor.metric_predictor.'
'MetricPredictor.model2vector')
@patch('mmrazor.models.task_modules.estimators.resource_estimator.'
'get_model_flops_params')
def test_run_loop(self, mock_flops, mock_model2vector,
mock_export_fix_subnet):
# test a new search: resume == None
loop_cfg = copy.deepcopy(self.train_cfg)
loop_cfg.runner = self.runner
loop_cfg.dataloader = self.dataloader
loop_cfg.evaluator = self.evaluator
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
loop._epoch = 1
fake_subnet = {'1': 'choice1', '2': 'choice2'}
loop.model.sample_subnet = MagicMock(return_value=fake_subnet)
self.runner.work_dir = self.temp_dir
loop.update_candidate_pool = MagicMock()
loop.val_candidate_pool = MagicMock()
mutation_candidates = Candidates([fake_subnet] * loop.num_mutation)
for i in range(loop.num_mutation):
mutation_candidates.set_resource(i, 0.1 + 0.1 * i, 'flops')
mutation_candidates.set_resource(i, 99 + i, 'score')
crossover_candidates = Candidates([fake_subnet] * loop.num_crossover)
for i in range(loop.num_crossover):
crossover_candidates.set_resource(i, 0.1 + 0.1 * i, 'flops')
crossover_candidates.set_resource(i, 99 + i, 'score')
loop.gen_mutation_candidates = \
MagicMock(return_value=mutation_candidates)
loop.gen_crossover_candidates = \
MagicMock(return_value=crossover_candidates)
loop.candidates = Candidates([fake_subnet] * 4)
mock_flops.return_value = (0.5, 101)
mock_export_fix_subnet.return_value = fake_subnet
mock_model2vector.return_value = dict(
normal_vector=[0, 1], onehot_vector=[0, 1, 0, 1])
loop.run()
assert os.path.exists(
os.path.join(self.temp_dir, 'best_fix_subnet.yaml'))
self.assertEqual(loop._epoch, loop._max_epochs)
assert os.path.exists(
os.path.join(self.temp_dir,
f'search_epoch_{loop._max_epochs-1}.pkl'))
# test resuming search
loop_cfg.resume_from = os.path.join(
self.temp_dir, f'search_epoch_{loop._max_epochs-1}.pkl')
loop = LOOPS.build(loop_cfg)
self.runner.rank = 0
loop.run()
self.assertEqual(loop._max_epochs, 1)