182 lines
6.0 KiB
Python
182 lines
6.0 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
import time
|
|
import warnings
|
|
|
|
import mmcv
|
|
import torch
|
|
from mmcls.apis import multi_gpu_test, single_gpu_test
|
|
from mmcls.datasets import build_dataloader, build_dataset
|
|
from mmcls.utils import collect_env, get_root_logger
|
|
from mmcv import DictAction
|
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
|
from mmcv.runner import init_dist, load_checkpoint
|
|
|
|
from mmrazor.core import build_searcher
|
|
from mmrazor.models import build_algorithm
|
|
from mmrazor.utils import setup_multi_processes
|
|
|
|
# TODO import `wrap_fp16_model` from mmcv and delete them from mmcls
|
|
try:
|
|
from mmcv.runner import wrap_fp16_model
|
|
except ImportError:
|
|
warnings.warn('wrap_fp16_model from mmcls will be deprecated.'
|
|
'Please install mmcv>=1.1.4.')
|
|
from mmcls.core import wrap_fp16_model
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='MMClsArchitecture search subnet')
|
|
parser.add_argument('config', help='test config file path')
|
|
parser.add_argument('checkpoint', help='checkpoint file')
|
|
parser.add_argument(
|
|
'--work-dir',
|
|
help='working direction is '
|
|
'to save search result and log')
|
|
parser.add_argument(
|
|
'--resume-from', type=str, help='the checkpoint file to resume from')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
parser.add_argument(
|
|
'--device',
|
|
choices=['cpu', 'cuda'],
|
|
default='cuda',
|
|
help='device used for testing')
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
cfg = mmcv.Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# set multi-process settings
|
|
setup_multi_processes(cfg)
|
|
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
cfg.model.pretrained = None
|
|
cfg.data.test.test_mode = True
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
cfg.work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
if args.launcher == 'none':
|
|
distributed = False
|
|
else:
|
|
distributed = True
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
|
|
# create work_dir
|
|
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
|
|
# init the logger before other steps
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
|
|
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
|
|
|
|
# log env info
|
|
env_info_dict = collect_env()
|
|
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
|
|
dash_line = '-' * 60 + '\n'
|
|
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
|
|
dash_line)
|
|
|
|
# log some basic info
|
|
logger.info(f'Distributed training: {distributed}')
|
|
logger.info(f'Config:\n{cfg.pretty_text}')
|
|
|
|
# build the dataloader
|
|
dataset = build_dataset(cfg.data.test)
|
|
|
|
# the extra round_up data will be removed during gpu/cpu collect
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=cfg.data.samples_per_gpu,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
dist=distributed,
|
|
shuffle=False,
|
|
round_up=True)
|
|
|
|
# build the algorithm and load checkpoint
|
|
algorithm = build_algorithm(cfg.algorithm)
|
|
model = algorithm.architecture.model
|
|
|
|
fp16_cfg = cfg.get('fp16', None)
|
|
if fp16_cfg is not None:
|
|
wrap_fp16_model(model)
|
|
|
|
checkpoint = load_checkpoint(
|
|
algorithm, args.checkpoint, map_location='cpu')
|
|
|
|
if 'CLASSES' in checkpoint.get('meta', {}):
|
|
CLASSES = checkpoint['meta']['CLASSES']
|
|
else:
|
|
from mmcls.datasets import ImageNet
|
|
warnings.simplefilter('once')
|
|
warnings.warn('Class names are not saved in the checkpoint\'s '
|
|
'meta data, use imagenet by default.')
|
|
CLASSES = ImageNet.CLASSES
|
|
|
|
if not distributed:
|
|
if args.device == 'cpu':
|
|
algorithm = algorithm.cpu()
|
|
else:
|
|
algorithm = MMDataParallel(algorithm, device_ids=[0])
|
|
model.CLASSES = CLASSES
|
|
test_fn = single_gpu_test
|
|
|
|
else:
|
|
algorithm = MMDistributedDataParallel(
|
|
algorithm.cuda(),
|
|
device_ids=[torch.cuda.current_device()],
|
|
broadcast_buffers=False)
|
|
test_fn = multi_gpu_test
|
|
|
|
logger.info('build search...')
|
|
searcher = build_searcher(
|
|
cfg.searcher,
|
|
default_args=dict(
|
|
algorithm=algorithm,
|
|
dataloader=data_loader,
|
|
test_fn=test_fn,
|
|
work_dir=cfg.work_dir,
|
|
logger=logger,
|
|
resume_from=args.resume_from))
|
|
logger.info('start search...')
|
|
searcher.search()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|