mmrazor/README_zh-CN.md

196 lines
8.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<div align="center">
<img src="./resources/mmrazor-logo.png" width="600"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab 官网</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab 开放平台</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
<!--算法库 Badges-->
[![PyPI](https://img.shields.io/pypi/v/mmrazor)](https://pypi.org/project/mmrazor)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmrazor.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmrazor/workflows/build/badge.svg)](https://github.com/open-mmlab/mmrazor/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmrazor/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmrazor)
[![license](https://img.shields.io/github/license/open-mmlab/mmrazor.svg)](https://github.com/open-mmlab/mmrazor/blob/master/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmrazor.svg)](https://github.com/open-mmlab/mmrazor/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmrazor.svg)](https://github.com/open-mmlab/mmrazor/issues)
<!--快速链接-->
<!--Note:请根据各算法库自身情况设置项目和链接-->
[📘使用文档](https://mmrazor.readthedocs.io/) |
[🛠️安装教程](https://mmrazor.readthedocs.io/en/latest/get_started.html) |
[👀模型库](https://mmrazor.readthedocs.io/en/latest/model_zoo.html) |
[🤔报告问题](https://github.com/open-mmlab/mmrazor/issues/new/choose)
</div>
<!--中/英 文档切换-->
<div align="center">
[English](/README.md) | 简体中文
</div>
## 说明
MMRazor是一个可用于模型瘦身和AutoML的模型压缩工具箱包含了3种主流的技术
- 网络结构搜索 (NAS)
- 模型剪枝
- 知识蒸馏 (KD)
- 量化 (下个版本发布)
MMRazor是[OpenMMLab](https://openmmlab.com/)项目的一部分。
主要特性
- **兼容性**
MMRazor和OpenMMLab有着类似的架构设计并且实现了轻量化算法和视觉任务间轻耦合因此很容易应用于OpenMMLab中其他的项目。
- **灵活性**
多种轻量化算法可以以一种即插即用的方式来组合使用,从而搭建出功能更强大的系统。
- **便利性**
得益于更好的模块化设计,开发者仅用修改少量代码,甚至只用修改配置文件即可实现新的轻量化算法。
下面是MMRazor设计和实现的概括图, 如果想了解更多的细节,请参考 [tutorials](/docs/en/tutorials/Tutorial_1_overview.md)。
<div align="center">
<img src="resources/design_and_implement.png" style="zoom:100%"/>
</div>
<br />
## 更新日志
MMRazor v0.3.1 版本已经在 2022.5.4 发布。
## 基准测试和模型库
测试结果可以在 [模型库](docs/en/model_zoo.md) 中找到.
已经支持的算法:
Neural Architecture Search
- [x] [DARTS(ICLR'2019)](configs/nas/darts)
- [x] [DetNAS(NeurIPS'2019)](configs/nas/detnas)
- [x] [SPOS(ECCV'2020)](configs/nas/spos)
Pruning
- [x] [AutoSlim(NeurIPS'2019)](/configs/pruning/autoslim)
Knowledge Distillation
- [x] [CWD(ICCV'2021)](/configs/distill/cwd)
- [x] [WSLD(ICLR'2021)](/configs/distill/wsld)
## 安装
MMRazor 依赖 [PyTorch](https://pytorch.org/) 和 [MMCV](https://github.com/open-mmlab/mmcv)。
请参考[get_started.md](/docs/en/get_started.md)获取更详细的安装指南。
## 快速入门
请参考 [get_started.md](/docs/en/get_started.md) 学习 MMRazor 的基本使用。 我们也提供了一些进阶教程:
- [overview](/docs/en/tutorials/Tutorial_1_overview.md)
- [learn about configs](/docs/en/tutorials/Tutorial_2_learn_about_configs.md)
- [customize architectures](/docs/en/tutorials/Tutorial_3_customize_architectures.md)
- [customize nas algorithms](/docs/en/tutorials/Tutorial_4_customize_nas_algorithms.md)
- [customize pruning algorithms](/docs/en/tutorials/Tutorial_5_customize_pruning_algorithms.md)
- [customize kd algorithms](/docs/en/tutorials/Tutorial_6_customize_kd_algorithms.md)
- [customize mixed algorithms with our algorithm_components](/docs/en/tutorials/Tutorial_7_customize_mixed_algorithms_with_out_algorithms_components.md)
- [apply existing algorithms to other existing tasks](/docs/en/tutorials/Tutorial_8_apply_existing_algorithms_to_new_tasks.md)
## 贡献指南
我们感谢所有的贡献者为改进和提升 MMRazor 所作出的努力。
请参考[贡献指南](/.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
## 致谢
MMRazor 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型压缩算法,从而不断为开源社区提供贡献。
## 引用
如果您发现此项目对您的研究有用,请考虑引用:
```BibTeX
@misc{2021mmrazor,
title={OpenMMLab Model Compression Toolbox and Benchmark},
author={MMRazor Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmrazor}},
year={2021}
}
```
## 开源许可证
该项目采用 [Apache 2.0 开源许可证](LICENSE)。
## OpenMMLab 的其他项目
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具箱
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=aCvMxdr3)添加OpenMMLab 官方小助手微信,加入 MMSelfSup 微信社区。
<div align="center">
<img src="./resources/zhihu_qrcode.jpg" height="400"/> <img src="./resources/qq_group_qrcode.jpg" height="400"/> <img src="./resources/xiaozhushou_weixin_qrcode.jpeg" height="300"/>
</div>
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗OpenMMLab 社区期待您的加入 👬