mmrazor/docs/en/test.md
pppppM b8daedf544
[Docs] Replace markdownlint with mdformat (#163)
* markdonwlint -> mdformat

* update mmcv min and max version

* fix README_zh-CN links
2022-05-31 16:21:53 +08:00

87 lines
3.5 KiB
Markdown

# Test a model
## NAS
To test nas method, you can use following command
```bash
python tools/${task}/test_${task}.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --cfg-options algorithm.mutable_cfg=${MUTABLE_CFG_PATH} [optional arguments]
```
- `task`: one of `mmcls``mmdet` and `mmseg`
- `MUTABLE_CFG_PATH`: Path of `mutable_cfg`. `mutable_cfg` represents **config for mutable of the subnet searched out**, used to specify different subnets for testing. An example for `mutable_cfg` can be found [here](https://github.com/open-mmlab/mmrazor/blob/master/configs/nas/spos/SPOS_SHUFFLENETV2_330M_IN1k_PAPER.yaml).
The usage of optional arguments are the same as corresponding tasks like mmclassification, mmdetection and mmsegmentation.
For example,
<pre>
python tools/mmcls/test_mmcls.py \
configs/nas/spos/spos_subnet_shufflenetv2_8xb128_in1k.py \
<em>your_subnet_checkpoint_path</em> \
--cfg-options algorithm.mutable_cfg=configs/nas/spos/SPOS_SHUFFLENETV2_330M_IN1k_PAPER.yaml
</pre>
## Pruning
### Split Checkpoint(Optional)
If you train a slimmable model during retraining, checkpoints of different subnets are
actually fused in only one checkpoint. You can split this checkpoint to
multiple independent checkpoints by using the following command
```bash
python tools/model_converters/split_checkpoint.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --channel-cfgs ${CHANNEL_CFG_PATH} [optional arguments]
```
- `CHANNEL_CFG_PATH`: A list of paths of `channel_cfg`. For example, when you
retrain a slimmable model, your command will be like `--cfg-options algorithm.channel_cfg=cfg1,cfg2,cfg3`.
And your command here should be `--channel-cfgs cfg1 cfg2 cfg3`. The order of them should be the same.
For example,
<pre>
python tools/model_converters/split_checkpoint.py \
configs/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k.py \
<em>your_retraining_checkpoint_path</em> \
--channel-cfgs configs/pruning/autoslim/AUTOSLIM_MBV2_530M_OFFICIAL.yaml configs/pruning/autoslim/AUTOSLIM_MBV2_320M_OFFICIAL.yaml configs/pruning/autoslim/AUTOSLIM_MBV2_220M_OFFICIAL.yaml
</pre>
### Test
To test pruning method, you can use following command
```bash
python tools/${task}/test_${task}.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --cfg-options algorithm.channel_cfg=${CHANNEL_CFG_PATH} [optional arguments]
```
- `task`: one of `mmcls``mmdet` and `mmseg`
- `CHANNEL_CFG_PATH`: Path of `channel_cfg`. `channel_cfg` represents **config for channel of the subnet searched out**, used to specify different subnets for testing. An example for `channel_cfg` can be found [here](https://github.com/open-mmlab/mmrazor/blob/master/configs/pruning/autoslim/AUTOSLIM_MBV2_220M_OFFICIAL.yaml), and the usage can be found [here](https://github.com/open-mmlab/mmrazor/blob/master/configs/pruning/autoslim/README.md#test-a-subnet).
For example,
<pre>
python ./tools/mmcls/test_mmcls.py \
configs/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k.py \
<em>your_splitted_checkpoint_path</em> --metrics accuracy \
--cfg-options algorithm.channel_cfg=configs/pruning/autoslim/AUTOSLIM_MBV2_530M_OFFICIAL.yaml
</pre>
## Distillation
To test distillation method, you can use the following command
```bash
python tools/${task}/test_${task}.py ${CONFIG_FILE} ${CHECKPOINT_PATH} [optional arguments]
```
- `task`: one of `mmcls``mmdet` and `mmseg`
For example,
<pre>
python ./tools/mmseg/test_mmseg.py \
configs/distill/cwd/cwd_cls_head_pspnet_r101_d8_pspnet_r18_d8_512x1024_cityscapes_80k.py \
<em>your_splitted_checkpoint_path</em> --show
</pre>