mmrazor/tests/test_datasets/test_datasets.py

89 lines
2.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import pickle
import tempfile
from unittest import TestCase
import numpy as np
from mmcls.registry import DATASETS as CLS_DATASETS
from mmrazor.registry import DATASETS
from mmrazor.utils import register_all_modules
register_all_modules()
ASSETS_ROOT = osp.abspath(osp.join(osp.dirname(__file__), '../data/dataset'))
class Test_CRD_CIFAR10(TestCase):
ORI_DATASET_TYPE = 'CIFAR10'
DATASET_TYPE = 'CRDDataset'
@classmethod
def setUpClass(cls) -> None:
super().setUpClass()
tmpdir = tempfile.TemporaryDirectory()
cls.tmpdir = tmpdir
data_prefix = tmpdir.name
cls.ORI_DEFAULT_ARGS = dict(
data_prefix=data_prefix, pipeline=[], test_mode=False)
cls.DEFAULT_ARGS = dict(neg_num=1, percent=0.5)
dataset_class = CLS_DATASETS.get(cls.ORI_DATASET_TYPE)
base_folder = osp.join(data_prefix, dataset_class.base_folder)
os.mkdir(base_folder)
cls.fake_imgs = np.random.randint(
0, 255, size=(6, 3 * 32 * 32), dtype=np.uint8)
cls.fake_labels = np.random.randint(0, 10, size=(6, ))
cls.fake_classes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
batch1 = dict(
data=cls.fake_imgs[:2], labels=cls.fake_labels[:2].tolist())
with open(osp.join(base_folder, 'data_batch_1'), 'wb') as f:
f.write(pickle.dumps(batch1))
batch2 = dict(
data=cls.fake_imgs[2:4], labels=cls.fake_labels[2:4].tolist())
with open(osp.join(base_folder, 'data_batch_2'), 'wb') as f:
f.write(pickle.dumps(batch2))
test_batch = dict(
data=cls.fake_imgs[4:], fine_labels=cls.fake_labels[4:].tolist())
with open(osp.join(base_folder, 'test_batch'), 'wb') as f:
f.write(pickle.dumps(test_batch))
meta = {dataset_class.meta['key']: cls.fake_classes}
meta_filename = dataset_class.meta['filename']
with open(osp.join(base_folder, meta_filename), 'wb') as f:
f.write(pickle.dumps(meta))
dataset_class.train_list = [['data_batch_1', None],
['data_batch_2', None]]
dataset_class.test_list = [['test_batch', None]]
dataset_class.meta['md5'] = None
def test_initialize(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test overriding metainfo by `metainfo` argument
ori_cfg = {
**self.ORI_DEFAULT_ARGS, 'metainfo': {
'classes': ('bus', 'car')
},
'type': self.ORI_DATASET_TYPE,
'_scope_': 'mmcls'
}
cfg = {'dataset': ori_cfg, **self.DEFAULT_ARGS}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.dataset.CLASSES, ('bus', 'car'))
@classmethod
def tearDownClass(cls):
cls.tmpdir.cleanup()
class Test_CRD_CIFAR100(Test_CRD_CIFAR10):
ORI_DATASET_TYPE = 'CIFAR100'