89 lines
2.9 KiB
Python
89 lines
2.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os
|
|
import os.path as osp
|
|
import pickle
|
|
import tempfile
|
|
from unittest import TestCase
|
|
|
|
import numpy as np
|
|
from mmcls.registry import DATASETS as CLS_DATASETS
|
|
|
|
from mmrazor.registry import DATASETS
|
|
from mmrazor.utils import register_all_modules
|
|
|
|
register_all_modules()
|
|
ASSETS_ROOT = osp.abspath(osp.join(osp.dirname(__file__), '../data/dataset'))
|
|
|
|
|
|
class Test_CRD_CIFAR10(TestCase):
|
|
ORI_DATASET_TYPE = 'CIFAR10'
|
|
DATASET_TYPE = 'CRDDataset'
|
|
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
super().setUpClass()
|
|
|
|
tmpdir = tempfile.TemporaryDirectory()
|
|
cls.tmpdir = tmpdir
|
|
data_prefix = tmpdir.name
|
|
cls.ORI_DEFAULT_ARGS = dict(
|
|
data_prefix=data_prefix, pipeline=[], test_mode=False)
|
|
cls.DEFAULT_ARGS = dict(neg_num=1, percent=0.5)
|
|
|
|
dataset_class = CLS_DATASETS.get(cls.ORI_DATASET_TYPE)
|
|
base_folder = osp.join(data_prefix, dataset_class.base_folder)
|
|
os.mkdir(base_folder)
|
|
|
|
cls.fake_imgs = np.random.randint(
|
|
0, 255, size=(6, 3 * 32 * 32), dtype=np.uint8)
|
|
cls.fake_labels = np.random.randint(0, 10, size=(6, ))
|
|
cls.fake_classes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
|
|
batch1 = dict(
|
|
data=cls.fake_imgs[:2], labels=cls.fake_labels[:2].tolist())
|
|
with open(osp.join(base_folder, 'data_batch_1'), 'wb') as f:
|
|
f.write(pickle.dumps(batch1))
|
|
|
|
batch2 = dict(
|
|
data=cls.fake_imgs[2:4], labels=cls.fake_labels[2:4].tolist())
|
|
with open(osp.join(base_folder, 'data_batch_2'), 'wb') as f:
|
|
f.write(pickle.dumps(batch2))
|
|
|
|
test_batch = dict(
|
|
data=cls.fake_imgs[4:], fine_labels=cls.fake_labels[4:].tolist())
|
|
with open(osp.join(base_folder, 'test_batch'), 'wb') as f:
|
|
f.write(pickle.dumps(test_batch))
|
|
|
|
meta = {dataset_class.meta['key']: cls.fake_classes}
|
|
meta_filename = dataset_class.meta['filename']
|
|
with open(osp.join(base_folder, meta_filename), 'wb') as f:
|
|
f.write(pickle.dumps(meta))
|
|
|
|
dataset_class.train_list = [['data_batch_1', None],
|
|
['data_batch_2', None]]
|
|
dataset_class.test_list = [['test_batch', None]]
|
|
dataset_class.meta['md5'] = None
|
|
|
|
def test_initialize(self):
|
|
dataset_class = DATASETS.get(self.DATASET_TYPE)
|
|
|
|
# Test overriding metainfo by `metainfo` argument
|
|
ori_cfg = {
|
|
**self.ORI_DEFAULT_ARGS, 'metainfo': {
|
|
'classes': ('bus', 'car')
|
|
},
|
|
'type': self.ORI_DATASET_TYPE,
|
|
'_scope_': 'mmcls'
|
|
}
|
|
cfg = {'dataset': ori_cfg, **self.DEFAULT_ARGS}
|
|
dataset = dataset_class(**cfg)
|
|
self.assertEqual(dataset.dataset.CLASSES, ('bus', 'car'))
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
cls.tmpdir.cleanup()
|
|
|
|
|
|
class Test_CRD_CIFAR100(Test_CRD_CIFAR10):
|
|
ORI_DATASET_TYPE = 'CIFAR100'
|