mmsegmentation/README.md

263 lines
14 KiB
Markdown
Raw Permalink Normal View History

2020-07-07 20:52:19 +08:00
<div align="center">
<img src="resources/mmseg-logo.png" width="600"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
<br />
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/)
[![PyPI](https://img.shields.io/pypi/v/mmsegmentation)](https://pypi.org/project/mmsegmentation)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmsegmentation/workflows/build/badge.svg)](https://github.com/open-mmlab/mmsegmentation/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmsegmentation/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmsegmentation)
[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/master/LICENSE)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
[📘Documentation](https://mmsegmentation.readthedocs.io/en/latest/) |
[🛠Installation](https://mmsegmentation.readthedocs.io/en/latest/get_started.html) |
[👀Model Zoo](https://mmsegmentation.readthedocs.io/en/latest/model_zoo.html) |
[🆕Update News](https://mmsegmentation.readthedocs.io/en/latest/changelog.html) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmsegmentation/issues/new/choose)
</div>
<div align="center">
2020-07-07 20:52:19 +08:00
2021-02-22 03:11:28 +08:00
English | [简体中文](README_zh-CN.md)
</div>
<div align="center">
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218352562-cdded397-b0f3-4ca1-b8dd-a60df8dca75b.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
</div>
2020-07-07 20:52:19 +08:00
## Introduction
MMSegmentation is an open source semantic segmentation library based on PyTorch.
It is a part of the [OpenMMLab](https://openmmlab.com/) project.
2020-07-07 20:52:19 +08:00
The master branch works with **PyTorch 1.5+**.
2020-07-07 20:52:19 +08:00
![demo image](resources/seg_demo.gif)
<details open>
<summary>Major features</summary>
2020-07-07 20:52:19 +08:00
- **Unified Benchmark**
We provide a unified benchmark toolbox for various semantic segmentation methods.
- **Modular Design**
We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.
- **Support of multiple methods out of box**
The toolbox directly supports popular and contemporary semantic segmentation frameworks, *e.g.* PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.
- **High efficiency**
The training speed is faster than or comparable to other codebases.
</details>
2020-07-07 20:52:19 +08:00
## What's New
### 💎 Stable version
2023-01-11 17:39:09 +08:00
v0.30.0 was released on 01/11/2023:
2023-01-11 17:39:09 +08:00
- Add 'Projects/' folder, and the first example project
- Support Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets
2022-01-11 01:05:09 +08:00
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
### 🌟 Preview of 1.x version
2023-01-11 17:39:09 +08:00
A brand new version of **MMSegmentation v1.0.0rc3** was released in 12/31/2022:
- Unifies interfaces of all components based on [MMEngine](https://github.com/open-mmlab/mmengine).
- Faster training and testing speed with complete support of mixed precision training.
- Refactored and more flexible [architecture](https://mmsegmentation.readthedocs.io/en/1.x/overview.html).
Find more new features in [1.x branch](https://github.com/open-mmlab/mmsegmentation/tree/1.x). Issues and PRs are welcome!
## Installation
Please refer to [get_started.md](docs/en/get_started.md#installation) for installation and [dataset_prepare.md](docs/en/dataset_prepare.md#prepare-datasets) for dataset preparation.
## Get Started
Please see [train.md](docs/en/train.md) and [inference.md](docs/en/inference.md) for the basic usage of MMSegmentation.
There are also tutorials for:
- [customizing dataset](docs/en/tutorials/customize_datasets.md)
- [designing data pipeline](docs/en/tutorials/data_pipeline.md)
- [customizing modules](docs/en/tutorials/customize_models.md)
- [customizing runtime](docs/en/tutorials/customize_runtime.md)
- [training tricks](docs/en/tutorials/training_tricks.md)
- [useful tools](docs/en/useful_tools.md)
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb) on Colab.
2020-07-07 20:52:19 +08:00
## Benchmark and model zoo
Results and models are available in the [model zoo](docs/en/model_zoo.md).
2020-07-07 20:52:19 +08:00
Supported backbones:
- [x] ResNet (CVPR'2016)
- [x] ResNeXt (CVPR'2017)
- [x] [HRNet (CVPR'2019)](configs/hrnet)
- [x] [ResNeSt (ArXiv'2020)](configs/resnest)
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
- [x] [Vision Transformer (ICLR'2021)](configs/vit)
[Feature] Support Twins (NeurIPS2021) (#989) * debug * debug * debug * this is a debug step, and needs to be recovered * need recover * git * debug * git * git * git * git * git * git * debug need recover * debug * git * debug * debug * debug * debug * debug * debug * debug * debug * debugf * debug * debug * debug * debug * debug * debug * debug * debug * git * git * git * use config small/base/large * debug * debug * git * debug * git * debug * debug * debug args * debug * debug * git * git * debug * git * git * git * git * git * debug * debug * git * debug * git * debug * debug * debug * debug * git * debug * git * git * debug * debug * git * git * git * git * debug * debug * debug * debug * git * debug * debug * git * git * debug * debug * git * debug * debug * debug * git * debug * debug * debug * Please enter the commit message for your changes. Lines starting * git * git * debug * debug * debug * git * git * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * git * debug * debug * debug * debug * debug * debug * debug * git * fix pre-commit error * fix error * git * git * git * git * git * git * debug * debug * debug * debug * debug * debug * git * debug * debug * debug * debug * debug * debug * debug * debug * debug * git * git * git * debug * debug * debug * git * git * git * git * git * git * git * git * git * debug * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * fix unittest error * fix config errors * fix twins2mmseg bug * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * fix init_weights() in twins.py * git * git * git * git * fix comment * fix comment * fix comment * fix comment * fix unit test coverage in TwinsPR * Add Twins README * Add Twins README * twins refactor * twins refactor * delete init_cfg in FFN * delete init_cfg in FFN * Update mmseg/models/backbones/twins.py * Update mmseg/models/backbones/twins.py * Update mmseg/models/backbones/twins.py Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * Update mmseg/models/backbones/twins.py * add conference name Co-authored-by: linxinyang <linxinyang@meituan.com> Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-12-09 19:18:10 +08:00
- [x] [Swin Transformer (ICCV'2021)](configs/swin)
- [x] [Twins (NeurIPS'2021)](configs/twins)
- [x] [BEiT (ICLR'2022)](configs/beit)
2022-04-28 21:54:57 +08:00
- [x] [ConvNeXt (CVPR'2022)](configs/convnext)
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
- [x] [SegNeXt (NeurIPS'2022)](configs/segnext)
2020-07-07 20:52:19 +08:00
Supported methods:
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
- [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
- [x] [PSANet (ECCV'2018)](configs/psanet)
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
- [x] [UPerNet (ECCV'2018)](configs/upernet)
- [x] [ICNet (ECCV'2018)](configs/icnet)
- [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
- [x] [EncNet (CVPR'2018)](configs/encnet)
- [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
- [x] [DANet (CVPR'2019)](configs/danet)
- [x] [APCNet (CVPR'2019)](configs/apcnet)
- [x] [EMANet (ICCV'2019)](configs/emanet)
- [x] [CCNet (ICCV'2019)](configs/ccnet)
- [x] [DMNet (ICCV'2019)](configs/dmnet)
- [x] [ANN (ICCV'2019)](configs/ann)
- [x] [GCNet (ICCVW'2019/TPAMI'2020)](configs/gcnet)
- [x] [FastFCN (ArXiv'2019)](configs/fastfcn)
- [x] [Fast-SCNN (ArXiv'2019)](configs/fastscnn)
- [x] [ISANet (ArXiv'2019/IJCV'2021)](configs/isanet)
- [x] [OCRNet (ECCV'2020)](configs/ocrnet)
- [x] [DNLNet (ECCV'2020)](configs/dnlnet)
- [x] [PointRend (CVPR'2020)](configs/point_rend)
- [x] [CGNet (TIP'2020)](configs/cgnet)
2021-10-13 11:35:58 +08:00
- [x] [BiSeNetV2 (IJCV'2021)](configs/bisenetv2)
- [x] [STDC (CVPR'2021)](configs/stdc)
- [x] [SETR (CVPR'2021)](configs/setr)
- [x] [DPT (ArXiv'2021)](configs/dpt)
[Feature] Support Segmenter (#955) * segmenter: add model * update * readme: update * config: update * segmenter: update readme * segmenter: update * segmenter: update * segmenter: update * configs: set checkpoint path to pretrain folder * segmenter: modify vit-s/lin, remove data config * rreadme: update * configs: transfer from _base_ to segmenter * configs: add 8x1 suffix * configs: remove redundant lines * configs: cleanup * first attempt * swipe CI error * Update mmseg/models/decode_heads/__init__.py Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * segmenter_linear: use fcn backbone * segmenter_mask: update * models: add segmenter vit * decoders: yapf+remove unused imports * apply precommit * segmenter/linear_head: fix * segmenter/linear_header: fix * segmenter: fix mask transformer * fix error * segmenter/mask_head: use trunc_normal init * refactor segmenter head * Fetch upstream (#1) * [Feature] Change options to cfg-option (#1129) * [Feature] Change option to cfg-option * add expire date and fix the docs * modify docstring * [Fix] Add <!-- [ABSTRACT] --> in metafile #1127 * [Fix] Fix correct num_classes of HRNet in LoveDA dataset #1136 * Bump to v0.20.1 (#1138) * bump version 0.20.1 * bump version 0.20.1 * [Fix] revise --option to --options #1140 Co-authored-by: Rockey <41846794+RockeyCoss@users.noreply.github.com> Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> * decode_head: switch from linear to fcn * fix init list formatting * configs: remove variants, keep only vit-s on ade * align inference metric of vit-s-mask * configs: add vit t/b/l * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * model_converters: use torch instead of einops * setup: remove einops * segmenter_mask: fix missing imports * add necessary imported init funtion * segmenter/seg-l: set resolution to 640 * segmenter/seg-l: fix test size * fix vitjax2mmseg * add README and unittest * fix unittest * add docstring * refactor config and add pretrained link * fix typo * add paper name in readme * change segmenter config names * fix typo in readme * fix typos in readme * fix segmenter typo * fix segmenter typo * delete redundant comma in config files * delete redundant comma in config files * fix convert script * update lateset master version Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> Co-authored-by: Rockey <41846794+RockeyCoss@users.noreply.github.com> Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
2022-01-26 06:50:51 +01:00
- [x] [Segmenter (ICCV'2021)](configs/segmenter)
[Feature] Support Twins (NeurIPS2021) (#989) * debug * debug * debug * this is a debug step, and needs to be recovered * need recover * git * debug * git * git * git * git * git * git * debug need recover * debug * git * debug * debug * debug * debug * debug * debug * debug * debug * debugf * debug * debug * debug * debug * debug * debug * debug * debug * git * git * git * use config small/base/large * debug * debug * git * debug * git * debug * debug * debug args * debug * debug * git * git * debug * git * git * git * git * git * debug * debug * git * debug * git * debug * debug * debug * debug * git * debug * git * git * debug * debug * git * git * git * git * debug * debug * debug * debug * git * debug * debug * git * git * debug * debug * git * debug * debug * debug * git * debug * debug * debug * Please enter the commit message for your changes. Lines starting * git * git * debug * debug * debug * git * git * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * git * debug * debug * debug * debug * debug * debug * debug * git * fix pre-commit error * fix error * git * git * git * git * git * git * debug * debug * debug * debug * debug * debug * git * debug * debug * debug * debug * debug * debug * debug * debug * debug * git * git * git * debug * debug * debug * git * git * git * git * git * git * git * git * git * debug * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * fix unittest error * fix config errors * fix twins2mmseg bug * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * fix init_weights() in twins.py * git * git * git * git * fix comment * fix comment * fix comment * fix comment * fix unit test coverage in TwinsPR * Add Twins README * Add Twins README * twins refactor * twins refactor * delete init_cfg in FFN * delete init_cfg in FFN * Update mmseg/models/backbones/twins.py * Update mmseg/models/backbones/twins.py * Update mmseg/models/backbones/twins.py Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * Update mmseg/models/backbones/twins.py * add conference name Co-authored-by: linxinyang <linxinyang@meituan.com> Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-12-09 19:18:10 +08:00
- [x] [SegFormer (NeurIPS'2021)](configs/segformer)
- [x] [K-Net (NeurIPS'2021)](configs/knet)
[DEST] add DEST model (#2482) ## Motivation We are from NVIDIA and we have developed a simplified and inference-efficient transformer for dense prediction tasks. The method is based on SegFormer with hardware-friendly design choices, resulting in better accuracy and over 2x reduction in inference speed as compared to the baseline. We believe this model would be of particular interests to those who want to deploy an efficient vision transformer for production, and it is easily adaptable to other tasks. Therefore, we would like to contribute our method to mmsegmentation in order to benefit a larger audience. The paper was accepted to [Transformer for Vision workshop](https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsites.google.com%2Fview%2Ft4v-cvpr22%2Fpapers%3Fauthuser%3D0&data=05%7C01%7Cboyinz%40nvidia.com%7Cbf078d69821449d1f4c908dab5e8c7da%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638022308636438546%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=XtSgPQrbVgHxt5L9XkXF%2BGWvc95haB3kKPcHnsVIF3M%3D&reserved=0) at CVPR 2022, here below are some resource links: Paper [https://arxiv.org/pdf/2204.13791.pdf](https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Farxiv.org%2Fpdf%2F2204.13791.pdf&data=05%7C01%7Cboyinz%40nvidia.com%7Cbf078d69821449d1f4c908dab5e8c7da%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638022308636438546%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=X%2FCVoa6PFA09EHfClES36QOa5NvbZu%2F6IDfBVwiYywU%3D&reserved=0) (Table 3 shows the semseg results) Code [https://github.com/NVIDIA/DL4AGX/tree/master/DEST](https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FNVIDIA%2FDL4AGX%2Ftree%2Fmaster%2FDEST&data=05%7C01%7Cboyinz%40nvidia.com%7Cbf078d69821449d1f4c908dab5e8c7da%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638022308636438546%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=9DLQZpEq1cN75%2FDf%2FniUOOUFS1ABX8FEUH02O6isGVQ%3D&reserved=0) A webinar on its application [https://www.nvidia.com/en-us/on-demand/session/other2022-drivetraining/](https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nvidia.com%2Fen-us%2Fon-demand%2Fsession%2Fother2022-drivetraining%2F&data=05%7C01%7Cboyinz%40nvidia.com%7Cbf078d69821449d1f4c908dab5e8c7da%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638022308636438546%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8jrBC%2Bp3jGxiaW4vtSfhh6GozC3tRqGNjNoALM%2FOYxs%3D&reserved=0) ## Modification Add backbone(smit.py) and head(dest_head.py) of DEST ## BC-breaking (Optional) N/A ## Use cases (Optional) N/A --------- Co-authored-by: MeowZheng <meowzheng@outlook.com>
2023-02-16 01:42:34 -08:00
- [x] [DEST (CVPRW'2022)](projects/dest)
2020-07-07 20:52:19 +08:00
Supported datasets:
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#loveda)
2022-01-22 16:47:38 +08:00
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isaid)
- [x] [High quality synthetic face occlusion](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#delving-into-high-quality-synthetic-face-occlusion-segmentation-datasets)
- [x] [ImageNetS](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#imagenets)
## FAQ
2020-07-07 20:52:19 +08:00
Please refer to [FAQ](docs/en/faq.md) for frequently asked questions.
2020-07-07 20:52:19 +08:00
## Contributing
2020-07-07 20:52:19 +08:00
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
2020-07-07 20:52:19 +08:00
## Acknowledgement
MMSegmentation is an open source project that welcome any contribution and feedback.
We wish that the toolbox and benchmark could serve the growing research
community by providing a flexible as well as standardized toolkit to reimplement existing methods
and develop their own new semantic segmentation methods.
2021-01-04 23:52:40 -08:00
## Citation
If you find this project useful in your research, please consider cite:
```bibtex
2021-01-04 23:52:40 -08:00
@misc{mmseg2020,
2021-02-22 03:11:28 +08:00
title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
2021-01-04 23:52:40 -08:00
author={MMSegmentation Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
year={2020}
}
```
## License
2020-07-07 20:52:19 +08:00
MMSegmentation is released under the Apache 2.0 license, while some specific features in this library are with other licenses. Please refer to [LICENSES.md](LICENSES.md) for the careful check, if you are using our code for commercial matters.
## Projects in OpenMMLab
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
2022-10-21 19:57:39 +08:00
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
2021-12-30 17:27:59 +08:00
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab Model Deployment Framework.