2020-08-11 19:23:35 +08:00
## Changelog
2022-05-01 14:06:04 +08:00
### V0.24.1 (5/1/2022)
**Bug Fixes**
- Fix `LayerDecayOptimizerConstructor` for MAE training ([#1539 ](https://github.com/open-mmlab/mmsegmentation/pull/1539 ), [#1540 ](https://github.com/open-mmlab/mmsegmentation/pull/1540 ))
2022-04-29 22:23:02 +08:00
### V0.24.0 (4/29/2022)
**Highlights**
- Support MAE: Masked Autoencoders Are Scalable Vision Learners
- Support Resnet strikes back
**New Features**
- Support MAE: Masked Autoencoders Are Scalable Vision Learners ([1307 ](https://github.com/open-mmlab/mmsegmentation/pull/1307 ), [1523 ](https://github.com/open-mmlab/mmsegmentation/pull/1523 ))
- Support Resnet strikes back ([1390 ](https://github.com/open-mmlab/mmsegmentation/pull/1390 ))
- Support extra dataloader settings in configs ([1435 ](https://github.com/open-mmlab/mmsegmentation/pull/1435 ))
**Bug Fixes**
- Fix input previous results for the last cascade_decode_head ([#1450 ](https://github.com/open-mmlab/mmsegmentation/pull/1450 ))
- Fix validation loss logging ([#1494 ](https://github.com/open-mmlab/mmsegmentation/pull/1494 ))
- Fix the bug in binary_cross_entropy ([1527 ](https://github.com/open-mmlab/mmsegmentation/pull/1527 ))
- Support single channel prediction for Binary Cross Entropy Loss ([#1454 ](https://github.com/open-mmlab/mmsegmentation/pull/1454 ))
- Fix potential bugs in accuracy.py ([1496 ](https://github.com/open-mmlab/mmsegmentation/pull/1496 ))
- Avoid converting label ids twice by label map during evaluation ([1417 ](https://github.com/open-mmlab/mmsegmentation/pull/1417 ))
- Fix bug about label_map ([1445 ](https://github.com/open-mmlab/mmsegmentation/pull/1445 ))
- Fix image save path bug in Windows ([1423 ](https://github.com/open-mmlab/mmsegmentation/pull/1423 ))
- Fix MMSegmentation Colab demo ([1501 ](https://github.com/open-mmlab/mmsegmentation/pull/1501 ), [1452 ](https://github.com/open-mmlab/mmsegmentation/pull/1452 ))
- Migrate azure blob for beit checkpoints ([1503 ](https://github.com/open-mmlab/mmsegmentation/pull/1503 ))
- Fix bug in `tools/analyse_logs.py` caused by wrong plot_iter in some cases ([1428 ](https://github.com/open-mmlab/mmsegmentation/pull/1428 ))
**Improvements**
- Merge BEiT and ConvNext's LR decay optimizer constructors ([#1438 ](https://github.com/open-mmlab/mmsegmentation/pull/1438 ))
- Register optimizer constructor with mmseg ([#1456 ](https://github.com/open-mmlab/mmsegmentation/pull/1456 ))
- Refactor transformer encode layer in ViT and BEiT backbone ([#1481 ](https://github.com/open-mmlab/mmsegmentation/pull/1481 ))
- Add `build_pos_embed` and `build_layers` for BEiT ([1517 ](https://github.com/open-mmlab/mmsegmentation/pull/1517 ))
- Add `with_cp` to mit and vit ([1431 ](https://github.com/open-mmlab/mmsegmentation/pull/1431 ))
- Fix inconsistent dtype of `seg_label` in stdc decode ([1463 ](https://github.com/open-mmlab/mmsegmentation/pull/1463 ))
- Delete random seed for training in `dist_train.sh` ([1519 ](https://github.com/open-mmlab/mmsegmentation/pull/1519 ))
- Revise high `workers_per_gpus` in config file ([#1506 ](https://github.com/open-mmlab/mmsegmentation/pull/1506 ))
- Add GPG keys and del mmcv version in Dockerfile ([1534 ](https://github.com/open-mmlab/mmsegmentation/pull/1534 ))
- Update checkpoint for model in deeplabv3plus ([#1487 ](https://github.com/open-mmlab/mmsegmentation/pull/1487 ))
- Add `DistSamplerSeedHook` to set epoch number to dataloader when runner is `EpochBasedRunner` ([1449 ](https://github.com/open-mmlab/mmsegmentation/pull/1449 ))
- Provide URLs of Swin Transformer pretrained models ([1389 ](https://github.com/open-mmlab/mmsegmentation/pull/1389 ))
- Updating Dockerfiles From Docker Directory and `get_started.md` to reach latest stable version of Python, PyTorch and MMCV ([1446 ](https://github.com/open-mmlab/mmsegmentation/pull/1446 ))
**Documentation**
- Add more clearly statement of CPU training/inference ([1518 ](https://github.com/open-mmlab/mmsegmentation/pull/1518 ))
**Contributors**
2022-05-20 18:29:44 +08:00
- @jiangyitong made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1431
- @kahkeng made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1447
- @Nourollah made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1446
- @androbaza made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1452
- @Yzichen made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1445
- @whu -pzhang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1423
- @panfeng -hover made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1417
- @Johnson -Wang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1496
- @jere357 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1460
- @mfernezir made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1494
- @donglixp made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1503
- @YuanLiuuuuuu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1307
- @Dawn -bin made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1527
2022-04-29 22:23:02 +08:00
2022-04-01 15:43:19 +08:00
### V0.23.0 (4/1/2022)
**Highlights**
- Support BEiT: BERT Pre-Training of Image Transformers
- Support K-Net: Towards Unified Image Segmentation
- Add `avg_non_ignore` of CELoss to support average loss over non-ignored elements
- Support dataset initialization with file client
**New Features**
- Support BEiT: BERT Pre-Training of Image Transformers ([#1404 ](https://github.com/open-mmlab/mmsegmentation/pull/1404 ))
- Support K-Net: Towards Unified Image Segmentation ([#1289 ](https://github.com/open-mmlab/mmsegmentation/pull/1289 ))
- Support dataset initialization with file client ([#1402 ](https://github.com/open-mmlab/mmsegmentation/pull/1402 ))
- Add class name function for STARE datasets ([#1376 ](https://github.com/open-mmlab/mmsegmentation/pull/1376 ))
- Support different seeds on different ranks when distributed training ([#1362 ](https://github.com/open-mmlab/mmsegmentation/pull/1362 ))
- Add `nlc2nchw2nlc` and `nchw2nlc2nchw` to simplify tensor with different dimension operation ([#1249 ](https://github.com/open-mmlab/mmsegmentation/pull/1249 ))
**Improvements**
- Synchronize random seed for distributed sampler ([#1411 ](https://github.com/open-mmlab/mmsegmentation/pull/1411 ))
- Add script and documentation for multi-machine distributed training ([#1383 ](https://github.com/open-mmlab/mmsegmentation/pull/1383 ))
**Bug Fixes**
- Add `avg_non_ignore` of CELoss to support average loss over non-ignored elements ([#1409 ](https://github.com/open-mmlab/mmsegmentation/pull/1409 ))
- Fix some wrong URLs of models or logs in `./configs` ([#1336 ](https://github.com/open-mmlab/mmsegmentation/pull/1433 ))
- Add title and color theme arguments to plot function in `tools/confusion_matrix.py` ([#1401 ](https://github.com/open-mmlab/mmsegmentation/pull/1401 ))
- Fix outdated link in Colab demo ([#1392 ](https://github.com/open-mmlab/mmsegmentation/pull/1392 ))
- Fix typos ([#1424 ](https://github.com/open-mmlab/mmsegmentation/pull/1424 ), [#1405 ](https://github.com/open-mmlab/mmsegmentation/pull/1405 ), [#1371 ](https://github.com/open-mmlab/mmsegmentation/pull/1371 ), [#1366 ](https://github.com/open-mmlab/mmsegmentation/pull/1366 ), [#1363 ](https://github.com/open-mmlab/mmsegmentation/pull/1363 ))
**Documentation**
- Add FAQ document ([#1420 ](https://github.com/open-mmlab/mmsegmentation/pull/1420 ))
- Fix the config name style description in official docs([#1414 ](https://github.com/open-mmlab/mmsegmentation/pull/1414 ))
**Contributors**
2022-05-20 18:29:44 +08:00
- @kinglintianxia made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1371
- @CCODING04 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1376
- @mob5566 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1401
- @xiongnemo made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1392
- @Xiangxu -0103 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1405
2022-04-01 15:43:19 +08:00
2022-03-09 20:05:44 +08:00
### V0.22.1 (3/9/2022)
**Bug Fixes**
- Fix the ZeroDivisionError that all pixels in one image is ignored. ([#1336 ](https://github.com/open-mmlab/mmsegmentation/pull/1336 ))
**Improvements**
- Provide URLs of STDC, Segmenter and Twins pretrained models ([#1272 ](https://github.com/open-mmlab/mmsegmentation/pull/1357 ))
2022-03-04 22:17:29 +08:00
### V0.22 (3/04/2022)
**Highlights**
2022-03-05 09:59:14 +08:00
- Support ConvNeXt: A ConvNet for the 2020s. Please use the latest MMClassification (0.21.0) to try it out.
2022-03-04 22:17:29 +08:00
- Support iSAID aerial Dataset.
- Officially Support inference on Windows OS.
**New Features**
- Support ConvNeXt: A ConvNet for the 2020s. ([#1216 ](https://github.com/open-mmlab/mmsegmentation/pull/1216 ))
- Support iSAID aerial Dataset. ([#1115 ](https://github.com/open-mmlab/mmsegmentation/pull/1115 )
- Generating and plotting confusion matrix. ([#1301 ](https://github.com/open-mmlab/mmsegmentation/pull/1301 ))
**Improvements**
- Refactor 4 decoder heads (ASPP, FCN, PSP, UPer): Split forward function into `_forward_feature` and `cls_seg` . ([#1299 ](https://github.com/open-mmlab/mmsegmentation/pull/1299 ))
- Add `min_size` arg in `Resize` to keep the shape after resize bigger than slide window. ([#1318 ](https://github.com/open-mmlab/mmsegmentation/pull/1318 ))
- Revise pre-commit-hooks. ([#1315 ](https://github.com/open-mmlab/mmsegmentation/pull/1315 ))
- Add win-ci. ([#1296 ](https://github.com/open-mmlab/mmsegmentation/pull/1296 ))
**Bug Fixes**
- Fix `mlp_ratio` type in Swin Transformer. ([#1274 ](https://github.com/open-mmlab/mmsegmentation/pull/1274 ))
- Fix path errors in `./demo` . ([#1269 ](https://github.com/open-mmlab/mmsegmentation/pull/1269 ))
- Fix bug in conversion of potsdam. ([#1279 ](https://github.com/open-mmlab/mmsegmentation/pull/1279 ))
- Make accuracy take into account `ignore_index` . ([#1259 ](https://github.com/open-mmlab/mmsegmentation/pull/1259 ))
- Add Pytorch HardSwish assertion in unit test. ([#1294 ](https://github.com/open-mmlab/mmsegmentation/pull/1294 ))
- Fix wrong palette value in vaihingen. ([#1292 ](https://github.com/open-mmlab/mmsegmentation/pull/1292 ))
- Fix the bug that SETR cannot load pretrain. ([#1293 ](https://github.com/open-mmlab/mmsegmentation/pull/1293 ))
- Update correct `In Collection` in metafile of each configs. ([#1239 ](https://github.com/open-mmlab/mmsegmentation/pull/1239 ))
- Upload completed STDC models. ([#1332 ](https://github.com/open-mmlab/mmsegmentation/pull/1332 ))
- Fix `DNLHead` exports onnx inference difference type Cast error. ([#1161 ](https://github.com/open-mmlab/mmsegmentation/pull/1332 ))
**Contributors**
- @JiaYanhao made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1269
- @andife made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1281
- @SBCV made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1279
- @HJoonKwon made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1259
- @Tsingularity made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1290
- @Waterman0524 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1115
- @MeowZheng made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1315
- @linfangjian01 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1318
2022-02-09 17:17:55 +08:00
### V0.21.1 (2/9/2022)
**Bug Fixes**
- Fix typos in docs. ([#1263 ](https://github.com/open-mmlab/mmsegmentation/pull/1263 ))
- Fix repeating log by `setup_multi_processes` . ([#1267 ](https://github.com/open-mmlab/mmsegmentation/pull/1267 ))
- Upgrade isort in pre-commit hook. ([#1270 ](https://github.com/open-mmlab/mmsegmentation/pull/1270 ))
**Improvements**
- Use MMCV load_state_dict func in ViT/Swin. ([#1272 ](https://github.com/open-mmlab/mmsegmentation/pull/1272 ))
- Add exception for PointRend for support CPU-only. ([#1271 ](https://github.com/open-mmlab/mmsegmentation/pull/1270 ))
2022-01-29 18:30:13 +08:00
### V0.21 (1/29/2022)
**Highlights**
- Officially Support CPUs training and inference, please use the latest MMCV (1.4.4) to try it out.
- Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021).
- Support ISPRS Potsdam and Vaihingen Dataset.
- Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers` .
**New Features**
- Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021) ([#955 ](https://github.com/open-mmlab/mmsegmentation/pull/955 ))
- Support ISPRS Potsdam and Vaihingen Dataset ([#1097 ](https://github.com/open-mmlab/mmsegmentation/pull/1097 ), [#1171 ](https://github.com/open-mmlab/mmsegmentation/pull/1171 ))
- Add segformer‘ s benchmark on cityscapes ([#1155 ](https://github.com/open-mmlab/mmsegmentation/pull/1155 ))
- Add auto resume ([#1172 ](https://github.com/open-mmlab/mmsegmentation/pull/1172 ))
- Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers` ([#1093 ](https://github.com/open-mmlab/mmsegmentation/pull/1093 ), [#1105 ](https://github.com/open-mmlab/mmsegmentation/pull/1105 ))
- Add log collector ([#1175 ](https://github.com/open-mmlab/mmsegmentation/pull/1175 ))
**Improvements**
- New-style CPU training and inference ([#1251 ](https://github.com/open-mmlab/mmsegmentation/pull/1251 ))
- Add UNet benchmark with multiple losses supervision ([#1143 ](https://github.com/open-mmlab/mmsegmentation/pull/1143 ))
**Bug Fixes**
- Fix the model statistics in doc for readthedoc ([#1153 ](https://github.com/open-mmlab/mmsegmentation/pull/1153 ))
- Set random seed for `palette` if not given ([#1152 ](https://github.com/open-mmlab/mmsegmentation/pull/1152 ))
- Add `COCOStuffDataset` in `class_names.py` ([#1222 ](https://github.com/open-mmlab/mmsegmentation/pull/1222 ))
- Fix bug in non-distributed multi-gpu training/testing ([#1247 ](https://github.com/open-mmlab/mmsegmentation/pull/1247 ))
- Delete unnecessary lines of STDCHead ([#1231 ](https://github.com/open-mmlab/mmsegmentation/pull/1231 ))
**Contributors**
- @jbwang1997 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1152
- @BeaverCC made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1206
- @Echo -minn made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1214
- @rstrudel made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/955
2021-12-15 16:49:42 +08:00
### V0.20.2 (12/15/2021)
**Bug Fixes**
- Revise --option to --options to avoid BC-breaking. ([#1140 ](https://github.com/open-mmlab/mmsegmentation/pull/1140 ))
2021-12-14 22:32:11 +08:00
### V0.20.1 (12/14/2021)
**Improvements**
- Change options to cfg-options ([#1129 ](https://github.com/open-mmlab/mmsegmentation/pull/1129 ))
**Bug Fixes**
- Fix `<!-- [ABSTRACT] -->` in metafile. ([#1127 ](https://github.com/open-mmlab/mmsegmentation/pull/1127 ))
- Fix correct `num_classes` of HRNet in `LoveDA` dataset ([#1136 ](https://github.com/open-mmlab/mmsegmentation/pull/1136 ))
2021-12-11 01:43:29 +08:00
### V0.20 (12/10/2021)
**Highlights**
- Support Twins ([#989 ](https://github.com/open-mmlab/mmsegmentation/pull/989 ))
- Support a real-time segmentation model STDC ([#995 ](https://github.com/open-mmlab/mmsegmentation/pull/995 ))
- Support a widely-used segmentation model in lane detection ERFNet ([#960 ](https://github.com/open-mmlab/mmsegmentation/pull/960 ))
- Support A Remote Sensing Land-Cover Dataset LoveDA ([#1028 ](https://github.com/open-mmlab/mmsegmentation/pull/1028 ))
- Support focal loss ([#1024 ](https://github.com/open-mmlab/mmsegmentation/pull/1024 ))
**New Features**
- Support Twins ([#989 ](https://github.com/open-mmlab/mmsegmentation/pull/989 ))
- Support a real-time segmentation model STDC ([#995 ](https://github.com/open-mmlab/mmsegmentation/pull/995 ))
- Support a widely-used segmentation model in lane detection ERFNet ([#960 ](https://github.com/open-mmlab/mmsegmentation/pull/960 ))
- Add SETR cityscapes benchmark ([#1087 ](https://github.com/open-mmlab/mmsegmentation/pull/1087 ))
- Add BiSeNetV1 COCO-Stuff 164k benchmark ([#1019 ](https://github.com/open-mmlab/mmsegmentation/pull/1019 ))
- Support focal loss ([#1024 ](https://github.com/open-mmlab/mmsegmentation/pull/1024 ))
- Add Cutout transform ([#1022 ](https://github.com/open-mmlab/mmsegmentation/pull/1022 ))
**Improvements**
- Set a random seed when the user does not set a seed ([#1039 ](https://github.com/open-mmlab/mmsegmentation/pull/1039 ))
- Add CircleCI setup ([#1086 ](https://github.com/open-mmlab/mmsegmentation/pull/1086 ))
- Skip CI on ignoring given paths ([#1078 ](https://github.com/open-mmlab/mmsegmentation/pull/1078 ))
- Add abstract and image for every paper ([#1060 ](https://github.com/open-mmlab/mmsegmentation/pull/1060 ))
- Create a symbolic link on windows ([#1090 ](https://github.com/open-mmlab/mmsegmentation/pull/1090 ))
- Support video demo using trained model ([#1014 ](https://github.com/open-mmlab/mmsegmentation/pull/1014 ))
**Bug Fixes**
- Fix incorrectly loading init_cfg or pretrained models of several transformer models ([#999 ](https://github.com/open-mmlab/mmsegmentation/pull/999 ), [#1069 ](https://github.com/open-mmlab/mmsegmentation/pull/1069 ), [#1102 ](https://github.com/open-mmlab/mmsegmentation/pull/1102 ))
2022-01-29 18:30:13 +08:00
- Fix EfficientMultiheadAttention in SegFormer ([#1037 ](https://github.com/open-mmlab/mmsegmentation/pull/1037 ))
2021-12-11 01:43:29 +08:00
- Remove `fp16` folder in `configs` ([#1031 ](https://github.com/open-mmlab/mmsegmentation/pull/1031 ))
- Fix several typos in .yml file (Dice Metric [#1041 ](https://github.com/open-mmlab/mmsegmentation/pull/1041 ), ADE20K dataset [#1120 ](https://github.com/open-mmlab/mmsegmentation/pull/1120 ), Training Memory (GB) [#1083 ](https://github.com/open-mmlab/mmsegmentation/pull/1083 ))
- Fix test error when using `--show-dir` ([#1091 ](https://github.com/open-mmlab/mmsegmentation/pull/1091 ))
- Fix dist training infinite waiting issue ([#1035 ](https://github.com/open-mmlab/mmsegmentation/pull/1035 ))
- Change the upper version of mmcv to 1.5.0 ([#1096 ](https://github.com/open-mmlab/mmsegmentation/pull/1096 ))
- Fix symlink failure on Windows ([#1038 ](https://github.com/open-mmlab/mmsegmentation/pull/1038 ))
- Cancel previous runs that are not completed ([#1118 ](https://github.com/open-mmlab/mmsegmentation/pull/1118 ))
- Unified links of readthedocs in docs ([#1119 ](https://github.com/open-mmlab/mmsegmentation/pull/1119 ))
**Contributors**
- @Junjue -Wang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1028
- @ddebby made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1066
- @del -zhenwu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1078
- @KangBK0120 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1106
- @zergzzlun made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1091
- @fingertap made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1035
- @irvingzhang0512 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1014
- @littleSunlxy made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/989
- @lkm2835
- @RockeyCoss
- @MengzhangLI
- @Junjun2016
- @xiexinch
- @xvjiarui
2021-11-03 05:27:20 +08:00
### V0.19 (11/02/2021)
**Highlights**
- Support TIMMBackbone wrapper ([#998 ](https://github.com/open-mmlab/mmsegmentation/pull/998 ))
- Support custom hook ([#428 ](https://github.com/open-mmlab/mmsegmentation/pull/428 ))
- Add codespell pre-commit hook ([#920 ](https://github.com/open-mmlab/mmsegmentation/pull/920 ))
- Add FastFCN benchmark on ADE20K ([#972 ](https://github.com/open-mmlab/mmsegmentation/pull/972 ))
**New Features**
- Support TIMMBackbone wrapper ([#998 ](https://github.com/open-mmlab/mmsegmentation/pull/998 ))
- Support custom hook ([#428 ](https://github.com/open-mmlab/mmsegmentation/pull/428 ))
- Add FastFCN benchmark on ADE20K ([#972 ](https://github.com/open-mmlab/mmsegmentation/pull/972 ))
- Add codespell pre-commit hook and fix typos ([#920 ](https://github.com/open-mmlab/mmsegmentation/pull/920 ))
**Improvements**
- Make inputs & channels smaller in unittests ([#1004 ](https://github.com/open-mmlab/mmsegmentation/pull/1004 ))
- Change `self.loss_decode` back to `dict` in Single Loss situation ([#1002 ](https://github.com/open-mmlab/mmsegmentation/pull/1002 ))
**Bug Fixes**
- Fix typo in usage example ([#1003 ](https://github.com/open-mmlab/mmsegmentation/pull/1003 ))
- Add contiguous after permutation in ViT ([#992 ](https://github.com/open-mmlab/mmsegmentation/pull/992 ))
- Fix the invalid link ([#985 ](https://github.com/open-mmlab/mmsegmentation/pull/985 ))
- Fix bug in CI with python 3.9 ([#994 ](https://github.com/open-mmlab/mmsegmentation/pull/994 ))
- Fix bug when loading class name form file in custom dataset ([#923 ](https://github.com/open-mmlab/mmsegmentation/pull/923 ))
**Contributors**
- @ShoupingShan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/923
- @RockeyCoss made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/954
- @HarborYuan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/992
- @lkm2835 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1003
- @gszh made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/428
- @VVsssssk
- @MengzhangLI
- @Junjun2016
2021-10-07 17:37:31 +08:00
### V0.18 (10/07/2021)
**Highlights**
- Support three real-time segmentation models (ICNet [#884 ](https://github.com/open-mmlab/mmsegmentation/pull/884 ), BiSeNetV1 [#851 ](https://github.com/open-mmlab/mmsegmentation/pull/851 ), and BiSeNetV2 [#804 ](https://github.com/open-mmlab/mmsegmentation/pull/804 ))
- Support one efficient segmentation model (FastFCN [#885 ](https://github.com/open-mmlab/mmsegmentation/pull/885 ))
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70 ](https://github.com/open-mmlab/mmsegmentation/pull/70 ))
- Support COCO-Stuff 10k and 164k datasets ([#625 ](https://github.com/open-mmlab/mmsegmentation/pull/625 ))
- Support evaluate concated dataset separately ([#833 ](https://github.com/open-mmlab/mmsegmentation/pull/833 ))
- Support loading GT for evaluation from multi-file backend ([#867 ](https://github.com/open-mmlab/mmsegmentation/pull/867 ))
**New Features**
- Support three real-time segmentation models (ICNet [#884 ](https://github.com/open-mmlab/mmsegmentation/pull/884 ), BiSeNetV1 [#851 ](https://github.com/open-mmlab/mmsegmentation/pull/851 ), and BiSeNetV2 [#804 ](https://github.com/open-mmlab/mmsegmentation/pull/804 ))
- Support one efficient segmentation model (FastFCN [#885 ](https://github.com/open-mmlab/mmsegmentation/pull/885 ))
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70 ](https://github.com/open-mmlab/mmsegmentation/pull/70 ))
- Support COCO-Stuff 10k and 164k datasets ([#625 ](https://github.com/open-mmlab/mmsegmentation/pull/625 ))
- Support evaluate concated dataset separately ([#833 ](https://github.com/open-mmlab/mmsegmentation/pull/833 ))
**Improvements**
- Support loading GT for evaluation from multi-file backend ([#867 ](https://github.com/open-mmlab/mmsegmentation/pull/867 ))
- Auto-convert SyncBN to BN when training on DP automatly([#772 ](https://github.com/open-mmlab/mmsegmentation/pull/772 ))
- Refactor Swin-Transformer ([#800 ](https://github.com/open-mmlab/mmsegmentation/pull/800 ))
**Bug Fixes**
- Update mmcv installation in dockerfile ([#860 ](https://github.com/open-mmlab/mmsegmentation/pull/860 ))
- Fix number of iteration bug when resuming checkpoint in distributed train ([#866 ](https://github.com/open-mmlab/mmsegmentation/pull/866 ))
- Fix parsing parse in val_step ([#906 ](https://github.com/open-mmlab/mmsegmentation/pull/906 ))
2021-09-01 22:43:38 +08:00
### V0.17 (09/01/2021)
**Highlights**
- Support SegFormer
- Support DPT
- Support Dark Zurich and Nighttime Driving datasets
- Support progressive evaluation
**New Features**
- Support SegFormer ([#599 ](https://github.com/open-mmlab/mmsegmentation/pull/599 ))
- Support DPT ([#605 ](https://github.com/open-mmlab/mmsegmentation/pull/605 ))
- Support Dark Zurich and Nighttime Driving datasets ([#815 ](https://github.com/open-mmlab/mmsegmentation/pull/815 ))
- Support progressive evaluation ([#709 ](https://github.com/open-mmlab/mmsegmentation/pull/709 ))
**Improvements**
- Add multiscale_output interface and unittests for HRNet ([#830 ](https://github.com/open-mmlab/mmsegmentation/pull/830 ))
- Support inherit cityscapes dataset ([#750 ](https://github.com/open-mmlab/mmsegmentation/pull/750 ))
- Fix some typos in README.md ([#824 ](https://github.com/open-mmlab/mmsegmentation/pull/824 ))
- Delete convert function and add instruction to ViT/Swin README.md ([#791 ](https://github.com/open-mmlab/mmsegmentation/pull/791 ))
- Add vit/swin/mit convert weight scripts ([#783 ](https://github.com/open-mmlab/mmsegmentation/pull/783 ))
- Add copyright files ([#796 ](https://github.com/open-mmlab/mmsegmentation/pull/796 ))
**Bug Fixes**
- Fix invalid checkpoint link in inference_demo.ipynb ([#814 ](https://github.com/open-mmlab/mmsegmentation/pull/814 ))
- Ensure that items in dataset have the same order across multi machine ([#780 ](https://github.com/open-mmlab/mmsegmentation/pull/780 ))
- Fix the log error ([#766 ](https://github.com/open-mmlab/mmsegmentation/pull/766 ))
2021-08-04 17:17:39 +08:00
### V0.16 (08/04/2021)
**Highlights**
- Support PyTorch 1.9
- Support SegFormer backbone MiT
- Support md2yml pre-commit hook
- Support frozen stage for HRNet
**New Features**
- Support SegFormer backbone MiT ([#594 ](https://github.com/open-mmlab/mmsegmentation/pull/594 ))
- Support md2yml pre-commit hook ([#732 ](https://github.com/open-mmlab/mmsegmentation/pull/732 ))
- Support mim ([#717 ](https://github.com/open-mmlab/mmsegmentation/pull/717 ))
- Add mmseg2torchserve tool ([#552 ](https://github.com/open-mmlab/mmsegmentation/pull/552 ))
**Improvements**
- Support hrnet frozen stage ([#743 ](https://github.com/open-mmlab/mmsegmentation/pull/743 ))
- Add template of reimplementation questions ([#741 ](https://github.com/open-mmlab/mmsegmentation/pull/741 ))
- Output pdf and epub formats for readthedocs ([#742 ](https://github.com/open-mmlab/mmsegmentation/pull/742 ))
- Refine the docstring of ResNet ([#723 ](https://github.com/open-mmlab/mmsegmentation/pull/723 ))
- Replace interpolate with resize ([#731 ](https://github.com/open-mmlab/mmsegmentation/pull/731 ))
- Update resource limit ([#700 ](https://github.com/open-mmlab/mmsegmentation/pull/700 ))
- Update config.md ([#678 ](https://github.com/open-mmlab/mmsegmentation/pull/678 ))
**Bug Fixes**
- Fix ATTENTION registry ([#729 ](https://github.com/open-mmlab/mmsegmentation/pull/729 ))
- Fix analyze log script ([#716 ](https://github.com/open-mmlab/mmsegmentation/pull/716 ))
- Fix doc api display ([#725 ](https://github.com/open-mmlab/mmsegmentation/pull/725 ))
- Fix patch_embed and pos_embed mismatch error ([#685 ](https://github.com/open-mmlab/mmsegmentation/pull/685 ))
- Fix efficient test for multi-node ([#707 ](https://github.com/open-mmlab/mmsegmentation/pull/707 ))
- Fix init_cfg in resnet backbone ([#697 ](https://github.com/open-mmlab/mmsegmentation/pull/697 ))
- Fix efficient test bug ([#702 ](https://github.com/open-mmlab/mmsegmentation/pull/702 ))
- Fix url error in config docs ([#680 ](https://github.com/open-mmlab/mmsegmentation/pull/680 ))
- Fix mmcv installation ([#676 ](https://github.com/open-mmlab/mmsegmentation/pull/676 ))
- Fix torch version ([#670 ](https://github.com/open-mmlab/mmsegmentation/pull/670 ))
**Contributors**
@sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo
2021-07-04 01:09:17 -07:00
### V0.15 (07/04/2021)
**Highlights**
- Support ViT, SETR, and Swin-Transformer
- Add Chinese documentation
- Unified parameter initialization
**Bug Fixes**
- Fix typo and links ([#608 ](https://github.com/open-mmlab/mmsegmentation/pull/608 ))
- Fix Dockerfile ([#607 ](https://github.com/open-mmlab/mmsegmentation/pull/607 ))
- Fix ViT init ([#609 ](https://github.com/open-mmlab/mmsegmentation/pull/609 ))
- Fix mmcv version compatible table ([#658 ](https://github.com/open-mmlab/mmsegmentation/pull/658 ))
- Fix model links of DMNEt ([#660 ](https://github.com/open-mmlab/mmsegmentation/pull/660 ))
**New Features**
- Support loading DeiT weights ([#538 ](https://github.com/open-mmlab/mmsegmentation/pull/538 ))
- Support SETR ([#531 ](https://github.com/open-mmlab/mmsegmentation/pull/531 ), [#635 ](https://github.com/open-mmlab/mmsegmentation/pull/635 ))
- Add config and models for ViT backbone with UperHead ([#520 ](https://github.com/open-mmlab/mmsegmentation/pull/531 ), [#635 ](https://github.com/open-mmlab/mmsegmentation/pull/520 ))
- Support Swin-Transformer ([#511 ](https://github.com/open-mmlab/mmsegmentation/pull/511 ))
- Add higher accuracy FastSCNN ([#606 ](https://github.com/open-mmlab/mmsegmentation/pull/606 ))
- Add Chinese documentation ([#666 ](https://github.com/open-mmlab/mmsegmentation/pull/666 ))
**Improvements**
- Unified parameter initialization ([#567 ](https://github.com/open-mmlab/mmsegmentation/pull/567 ))
- Separate CUDA and CPU in github action CI ([#602 ](https://github.com/open-mmlab/mmsegmentation/pull/602 ))
- Support persistent dataloader worker ([#646 ](https://github.com/open-mmlab/mmsegmentation/pull/646 ))
- Update meta file fields ([#661 ](https://github.com/open-mmlab/mmsegmentation/pull/661 ), [#664 ](https://github.com/open-mmlab/mmsegmentation/pull/664 ))
2021-06-02 18:43:08 -07:00
### V0.14 (06/02/2021)
**Highlights**
- Support ONNX to TensorRT
- Support MIM
**Bug Fixes**
- Fix ONNX to TensorRT verify ([#547 ](https://github.com/open-mmlab/mmsegmentation/pull/547 ))
- Fix save best for EvalHook ([#575 ](https://github.com/open-mmlab/mmsegmentation/pull/575 ))
**New Features**
- Support loading DeiT weights ([#538 ](https://github.com/open-mmlab/mmsegmentation/pull/538 ))
- Support ONNX to TensorRT ([#542 ](https://github.com/open-mmlab/mmsegmentation/pull/542 ))
- Support output results for ADE20k ([#544 ](https://github.com/open-mmlab/mmsegmentation/pull/544 ))
- Support MIM ([#549 ](https://github.com/open-mmlab/mmsegmentation/pull/549 ))
**Improvements**
- Add option for ViT output shape ([#530 ](https://github.com/open-mmlab/mmsegmentation/pull/530 ))
- Infer batch size using len(result) ([#532 ](https://github.com/open-mmlab/mmsegmentation/pull/532 ))
- Add compatible table between MMSeg and MMCV ([#558 ](https://github.com/open-mmlab/mmsegmentation/pull/558 ))
2021-05-05 16:56:19 -07:00
### V0.13 (05/05/2021)
**Highlights**
- Support Pascal Context Class-59 dataset.
- Support Visual Transformer Backbone.
- Support mFscore metric.
**Bug Fixes**
- Fixed Colaboratory tutorial ([#451 ](https://github.com/open-mmlab/mmsegmentation/pull/451 ))
- Fixed mIoU calculation range ([#471 ](https://github.com/open-mmlab/mmsegmentation/pull/471 ))
- Fixed sem_fpn, unet README.md ([#492 ](https://github.com/open-mmlab/mmsegmentation/pull/492 ))
- Fixed `num_classes` in FCN for Pascal Context 60-class dataset ([#488 ](https://github.com/open-mmlab/mmsegmentation/pull/488 ))
- Fixed FP16 inference ([#497 ](https://github.com/open-mmlab/mmsegmentation/pull/497 ))
**New Features**
- Support dynamic export and visualize to pytorch2onnx ([#463 ](https://github.com/open-mmlab/mmsegmentation/pull/463 ))
- Support export to torchscript ([#469 ](https://github.com/open-mmlab/mmsegmentation/pull/469 ), [#499 ](https://github.com/open-mmlab/mmsegmentation/pull/499 ))
- Support Pascal Context Class-59 dataset ([#459 ](https://github.com/open-mmlab/mmsegmentation/pull/459 ))
- Support Visual Transformer backbone ([#465 ](https://github.com/open-mmlab/mmsegmentation/pull/465 ))
- Support UpSample Neck ([#512 ](https://github.com/open-mmlab/mmsegmentation/pull/512 ))
- Support mFscore metric ([#509 ](https://github.com/open-mmlab/mmsegmentation/pull/509 ))
**Improvements**
- Add more CI for PyTorch ([#460 ](https://github.com/open-mmlab/mmsegmentation/pull/460 ))
- Add print model graph args for tools/print_config.py ([#451 ](https://github.com/open-mmlab/mmsegmentation/pull/451 ))
- Add cfg links in modelzoo README.md ([#468 ](https://github.com/open-mmlab/mmsegmentation/pull/469 ))
- Add BaseSegmentor import to segmentors/__init__.py ([#495 ](https://github.com/open-mmlab/mmsegmentation/pull/495 ))
- Add MMOCR, MMGeneration links ([#501 ](https://github.com/open-mmlab/mmsegmentation/pull/501 ), [#506 ](https://github.com/open-mmlab/mmsegmentation/pull/506 ))
- Add Chinese QR code ([#506 ](https://github.com/open-mmlab/mmsegmentation/pull/506 ))
- Use MMCV MODEL_REGISTRY ([#515 ](https://github.com/open-mmlab/mmsegmentation/pull/515 ))
- Add ONNX testing tools ([#498 ](https://github.com/open-mmlab/mmsegmentation/pull/498 ))
- Replace data_dict calling 'img' key to support MMDet3D ([#514 ](https://github.com/open-mmlab/mmsegmentation/pull/514 ))
- Support reading class_weight from file in loss function ([#513 ](https://github.com/open-mmlab/mmsegmentation/pull/513 ))
- Make tags as comment ([#505 ](https://github.com/open-mmlab/mmsegmentation/pull/505 ))
- Use MMCV EvalHook ([#438 ](https://github.com/open-mmlab/mmsegmentation/pull/438 ))
2021-04-03 21:02:56 -07:00
### V0.12 (04/03/2021)
**Highlights**
- Support FCN-Dilate 6 model.
- Support Dice Loss.
**Bug Fixes**
- Fixed PhotoMetricDistortion Doc ([#388 ](https://github.com/open-mmlab/mmsegmentation/pull/388 ))
- Fixed install scripts ([#399 ](https://github.com/open-mmlab/mmsegmentation/pull/399 ))
- Fixed Dice Loss multi-class ([#417 ](https://github.com/open-mmlab/mmsegmentation/pull/417 ))
**New Features**
- Support Dice Loss ([#396 ](https://github.com/open-mmlab/mmsegmentation/pull/396 ))
- Add plot logs tool ([#426 ](https://github.com/open-mmlab/mmsegmentation/pull/426 ))
- Add opacity option to show_result ([#425 ](https://github.com/open-mmlab/mmsegmentation/pull/425 ))
- Speed up mIoU metric ([#430 ](https://github.com/open-mmlab/mmsegmentation/pull/430 ))
**Improvements**
- Refactor unittest file structure ([#440 ](https://github.com/open-mmlab/mmsegmentation/pull/440 ))
- Fix typos in the repo ([#449 ](https://github.com/open-mmlab/mmsegmentation/pull/449 ))
- Include class-level metrics in the log ([#445 ](https://github.com/open-mmlab/mmsegmentation/pull/445 ))
2021-02-02 15:09:20 -08:00
### V0.11 (02/02/2021)
**Highlights**
- Support memory efficient test, add more UNet models.
**Bug Fixes**
- Fixed TTA resize scale ([#334 ](https://github.com/open-mmlab/mmsegmentation/pull/334 ))
- Fixed CI for pip 20.3 ([#307 ](https://github.com/open-mmlab/mmsegmentation/pull/307 ))
- Fixed ADE20k test ([#359 ](https://github.com/open-mmlab/mmsegmentation/pull/359 ))
**New Features**
- Support memory efficient test ([#330 ](https://github.com/open-mmlab/mmsegmentation/pull/330 ))
- Add more UNet benchmarks ([#324 ](https://github.com/open-mmlab/mmsegmentation/pull/324 ))
- Support Lovasz Loss ([#351 ](https://github.com/open-mmlab/mmsegmentation/pull/351 ))
**Improvements**
- Move train_cfg/test_cfg inside model ([#341 ](https://github.com/open-mmlab/mmsegmentation/pull/341 ))
2021-01-02 15:29:56 -08:00
### V0.10 (01/01/2021)
**Highlights**
- Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b.
**Bug Fixes**
- Fixed CPU TTA ([#276 ](https://github.com/open-mmlab/mmsegmentation/pull/276 ))
- Fixed CI for pip 20.3 ([#307 ](https://github.com/open-mmlab/mmsegmentation/pull/307 ))
**New Features**
2021-01-04 23:52:40 -08:00
- Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316 ](https://github.com/open-mmlab/mmsegmentation/pull/316 ))
2021-01-02 15:29:56 -08:00
- Support MobileNetV3 ([#268 ](https://github.com/open-mmlab/mmsegmentation/pull/268 ))
- Add 4 retinal vessel segmentation benchmark ([#315 ](https://github.com/open-mmlab/mmsegmentation/pull/315 ))
- Support DMNet ([#313 ](https://github.com/open-mmlab/mmsegmentation/pull/313 ))
- Support APCNet ([#299 ](https://github.com/open-mmlab/mmsegmentation/pull/299 ))
**Improvements**
- Refactor Documentation page ([#311 ](https://github.com/open-mmlab/mmsegmentation/pull/311 ))
- Support resize data augmentation according to original image size ([#291 ](https://github.com/open-mmlab/mmsegmentation/pull/291 ))
2020-12-01 21:10:55 -08:00
### V0.9 (30/11/2020)
**Highlights**
- Support 4 medical dataset, UNet and CGNet.
**New Features**
- Support RandomRotate transform ([#215 ](https://github.com/open-mmlab/mmsegmentation/pull/215 ), [#260 ](https://github.com/open-mmlab/mmsegmentation/pull/260 ))
- Support RGB2Gray transform ([#227 ](https://github.com/open-mmlab/mmsegmentation/pull/227 ))
- Support Rerange transform ([#228 ](https://github.com/open-mmlab/mmsegmentation/pull/228 ))
- Support ignore_index for BCE loss ([#210 ](https://github.com/open-mmlab/mmsegmentation/pull/210 ))
- Add modelzoo statistics ([#263 ](https://github.com/open-mmlab/mmsegmentation/pull/263 ))
- Support Dice evaluation metric ([#225 ](https://github.com/open-mmlab/mmsegmentation/pull/225 ))
- Support Adjust Gamma transform ([#232 ](https://github.com/open-mmlab/mmsegmentation/pull/232 ))
- Support CLAHE transform ([#229 ](https://github.com/open-mmlab/mmsegmentation/pull/229 ))
**Bug Fixes**
- Fixed detail API link ([#267 ](https://github.com/open-mmlab/mmsegmentation/pull/267 ))
2020-11-04 16:18:02 -08:00
### V0.8 (03/11/2020)
**Highlights**
- Support 4 medical dataset, UNet and CGNet.
**New Features**
- Support customize runner ([#118 ](https://github.com/open-mmlab/mmsegmentation/pull/118 ))
- Support UNet ([#161 ](https://github.com/open-mmlab/mmsegmentation/pull/162 ))
- Support CHASE_DB1, DRIVE, STARE, HRD ([#203 ](https://github.com/open-mmlab/mmsegmentation/pull/203 ))
- Support CGNet ([#223 ](https://github.com/open-mmlab/mmsegmentation/pull/223 ))
2020-10-10 19:19:52 +08:00
### V0.7 (07/10/2020)
**Highlights**
- Support Pascal Context dataset and customizing class dataset.
**Bug Fixes**
- Fixed CPU inference ([#153 ](https://github.com/open-mmlab/mmsegmentation/pull/153 ))
**New Features**
- Add DeepLab OS16 models ([#154 ](https://github.com/open-mmlab/mmsegmentation/pull/154 ))
- Support Pascal Context dataset ([#133 ](https://github.com/open-mmlab/mmsegmentation/pull/133 ))
- Support customizing dataset classes ([#71 ](https://github.com/open-mmlab/mmsegmentation/pull/71 ))
- Support customizing dataset palette ([#157 ](https://github.com/open-mmlab/mmsegmentation/pull/157 ))
**Improvements**
- Support 4D tensor output in ONNX ([#150 ](https://github.com/open-mmlab/mmsegmentation/pull/150 ))
- Remove redundancies in ONNX export ([#160 ](https://github.com/open-mmlab/mmsegmentation/pull/160 ))
- Migrate to MMCV DepthwiseSeparableConv ([#158 ](https://github.com/open-mmlab/mmsegmentation/pull/158 ))
- Migrate to MMCV collect_env ([#137 ](https://github.com/open-mmlab/mmsegmentation/pull/137 ))
- Use img_prefix and seg_prefix for loading ([#153 ](https://github.com/open-mmlab/mmsegmentation/pull/153 ))
2020-09-10 20:57:18 +08:00
### V0.6 (10/09/2020)
2020-10-07 19:50:16 +08:00
2020-09-10 20:57:18 +08:00
**Highlights**
2020-10-07 19:50:16 +08:00
- Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt.
2020-09-10 20:57:18 +08:00
**Bug Fixes**
2020-10-07 19:50:16 +08:00
2020-09-10 20:57:18 +08:00
- Fixed sliding inference ONNX export ([#90 ](https://github.com/open-mmlab/mmsegmentation/pull/90 ))
**New Features**
2020-10-07 19:50:16 +08:00
2020-09-10 20:57:18 +08:00
- Support MobileNet v2 ([#86 ](https://github.com/open-mmlab/mmsegmentation/pull/86 ))
- Support EMANet ([#34 ](https://github.com/open-mmlab/mmsegmentation/pull/34 ))
- Support DNL ([#37 ](https://github.com/open-mmlab/mmsegmentation/pull/37 ))
- Support PointRend ([#109 ](https://github.com/open-mmlab/mmsegmentation/pull/109 ))
- Support Semantic FPN ([#94 ](https://github.com/open-mmlab/mmsegmentation/pull/94 ))
- Support Fast-SCNN ([#58 ](https://github.com/open-mmlab/mmsegmentation/pull/58 ))
- Support ResNeSt backbone ([#47 ](https://github.com/open-mmlab/mmsegmentation/pull/47 ))
- Support ONNX export (experimental) ([#12 ](https://github.com/open-mmlab/mmsegmentation/pull/12 ))
**Improvements**
2020-10-07 19:50:16 +08:00
2020-09-10 20:57:18 +08:00
- Support Upsample in ONNX ([#100 ](https://github.com/open-mmlab/mmsegmentation/pull/100 ))
- Support Windows install (experimental) ([#75 ](https://github.com/open-mmlab/mmsegmentation/pull/75 ))
- Add more OCRNet results ([#20 ](https://github.com/open-mmlab/mmsegmentation/pull/20 ))
- Add PyTorch 1.6 CI ([#64 ](https://github.com/open-mmlab/mmsegmentation/pull/64 ))
- Get version and githash automatically ([#55 ](https://github.com/open-mmlab/mmsegmentation/pull/55 ))
2020-08-11 19:23:35 +08:00
### v0.5.1 (11/08/2020)
2020-10-07 19:50:16 +08:00
2020-08-11 19:23:35 +08:00
**Highlights**
2020-10-07 19:50:16 +08:00
2020-08-11 19:23:35 +08:00
- Support FP16 and more generalized OHEM
2020-10-07 19:50:16 +08:00
2020-08-11 19:23:35 +08:00
**Bug Fixes**
2020-10-07 19:50:16 +08:00
2020-08-11 19:23:35 +08:00
- Fixed Pascal VOC conversion script (#19 )
- Fixed OHEM weight assign bug (#54 )
- Fixed palette type when palette is not given (#27 )
2020-10-07 19:50:16 +08:00
2020-08-11 19:23:35 +08:00
**New Features**
2020-10-07 19:50:16 +08:00
2020-08-11 19:23:35 +08:00
- Support FP16 (#21 )
- Generalized OHEM (#54 )
2020-10-07 19:50:16 +08:00
2020-08-11 19:23:35 +08:00
**Improvements**
2020-10-07 19:50:16 +08:00
2020-08-11 19:23:35 +08:00
- Add load-from flag (#33 )
- Fixed training tricks doc about different learning rates of model (#26 )