2022-09-27 16:49:38 +08:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
import torch
|
|
|
|
from mmengine.optim import OptimWrapper
|
|
|
|
from mmengine.structures import PixelData
|
|
|
|
from torch import nn
|
|
|
|
from torch.optim import SGD
|
|
|
|
|
|
|
|
from mmseg.models import SegDataPreProcessor
|
|
|
|
from mmseg.models.decode_heads.cascade_decode_head import BaseCascadeDecodeHead
|
|
|
|
from mmseg.models.decode_heads.decode_head import BaseDecodeHead
|
|
|
|
from mmseg.registry import MODELS
|
|
|
|
from mmseg.structures import SegDataSample
|
|
|
|
|
|
|
|
|
|
|
|
def _demo_mm_inputs(input_shape=(1, 3, 8, 16), num_classes=10):
|
|
|
|
"""Create a superset of inputs needed to run test or train batches.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_shape (tuple):
|
|
|
|
input batch dimensions
|
|
|
|
|
|
|
|
num_classes (int):
|
|
|
|
number of semantic classes
|
|
|
|
"""
|
|
|
|
(N, C, H, W) = input_shape
|
|
|
|
|
|
|
|
imgs = torch.randn(*input_shape)
|
|
|
|
segs = torch.randint(
|
|
|
|
low=0, high=num_classes - 1, size=(N, H, W), dtype=torch.long)
|
|
|
|
|
|
|
|
img_metas = [{
|
|
|
|
'img_shape': (H, W),
|
|
|
|
'ori_shape': (H, W),
|
|
|
|
'pad_shape': (H, W, C),
|
|
|
|
'filename': '<demo>.png',
|
|
|
|
'scale_factor': 1.0,
|
|
|
|
'flip': False,
|
|
|
|
'flip_direction': 'horizontal'
|
|
|
|
} for _ in range(N)]
|
|
|
|
|
|
|
|
data_samples = [
|
|
|
|
SegDataSample(
|
|
|
|
gt_sem_seg=PixelData(data=segs[i]), metainfo=img_metas[i])
|
|
|
|
for i in range(N)
|
|
|
|
]
|
|
|
|
|
|
|
|
mm_inputs = {'imgs': torch.FloatTensor(imgs), 'data_samples': data_samples}
|
|
|
|
|
|
|
|
return mm_inputs
|
|
|
|
|
|
|
|
|
|
|
|
@MODELS.register_module()
|
|
|
|
class ExampleBackbone(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.conv = nn.Conv2d(3, 3, 3)
|
|
|
|
|
|
|
|
def init_weights(self, pretrained=None):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return [self.conv(x)]
|
|
|
|
|
|
|
|
|
|
|
|
@MODELS.register_module()
|
|
|
|
class ExampleDecodeHead(BaseDecodeHead):
|
|
|
|
|
2022-12-30 13:46:52 +08:00
|
|
|
def __init__(self, num_classes=19, out_channels=None, **kwargs):
|
2022-09-27 16:49:38 +08:00
|
|
|
super().__init__(
|
2022-12-30 13:46:52 +08:00
|
|
|
3, 3, num_classes=num_classes, out_channels=out_channels, **kwargs)
|
2022-09-27 16:49:38 +08:00
|
|
|
|
|
|
|
def forward(self, inputs):
|
|
|
|
return self.cls_seg(inputs[0])
|
|
|
|
|
|
|
|
|
|
|
|
@MODELS.register_module()
|
|
|
|
class ExampleCascadeDecodeHead(BaseCascadeDecodeHead):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__(3, 3, num_classes=19)
|
|
|
|
|
|
|
|
def forward(self, inputs, prev_out):
|
|
|
|
return self.cls_seg(inputs[0])
|
|
|
|
|
|
|
|
|
|
|
|
def _segmentor_forward_train_test(segmentor):
|
|
|
|
if isinstance(segmentor.decode_head, nn.ModuleList):
|
|
|
|
num_classes = segmentor.decode_head[-1].num_classes
|
|
|
|
else:
|
|
|
|
num_classes = segmentor.decode_head.num_classes
|
|
|
|
# batch_size=2 for BatchNorm
|
|
|
|
mm_inputs = _demo_mm_inputs(num_classes=num_classes)
|
|
|
|
|
|
|
|
# convert to cuda Tensor if applicable
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
segmentor = segmentor.cuda()
|
|
|
|
|
|
|
|
# check data preprocessor
|
|
|
|
if not hasattr(segmentor,
|
|
|
|
'data_preprocessor') or segmentor.data_preprocessor is None:
|
|
|
|
segmentor.data_preprocessor = SegDataPreProcessor()
|
|
|
|
|
|
|
|
mm_inputs = segmentor.data_preprocessor(mm_inputs, True)
|
|
|
|
imgs = mm_inputs.pop('imgs')
|
|
|
|
data_samples = mm_inputs.pop('data_samples')
|
|
|
|
|
|
|
|
# create optimizer wrapper
|
|
|
|
optimizer = SGD(segmentor.parameters(), lr=0.1)
|
|
|
|
optim_wrapper = OptimWrapper(optimizer)
|
|
|
|
|
|
|
|
# Test forward train
|
|
|
|
losses = segmentor.forward(imgs, data_samples, mode='loss')
|
|
|
|
assert isinstance(losses, dict)
|
|
|
|
|
|
|
|
# Test train_step
|
|
|
|
data_batch = dict(inputs=imgs, data_samples=data_samples)
|
|
|
|
outputs = segmentor.train_step(data_batch, optim_wrapper)
|
|
|
|
assert isinstance(outputs, dict)
|
|
|
|
assert 'loss' in outputs
|
|
|
|
|
|
|
|
# Test val_step
|
|
|
|
with torch.no_grad():
|
|
|
|
segmentor.eval()
|
|
|
|
data_batch = dict(inputs=imgs, data_samples=data_samples)
|
|
|
|
outputs = segmentor.val_step(data_batch)
|
|
|
|
assert isinstance(outputs, list)
|
|
|
|
|
|
|
|
# Test forward simple test
|
|
|
|
with torch.no_grad():
|
|
|
|
segmentor.eval()
|
|
|
|
data_batch = dict(inputs=imgs, data_samples=data_samples)
|
|
|
|
results = segmentor.forward(imgs, data_samples, mode='tensor')
|
|
|
|
assert isinstance(results, torch.Tensor)
|