mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
393 lines
16 KiB
Python
393 lines
16 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import logging
|
||
|
from typing import List, Optional
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from mmengine.logging import print_log
|
||
|
from mmengine.structures import PixelData
|
||
|
from torch import Tensor
|
||
|
|
||
|
from mmseg.registry import MODELS
|
||
|
from mmseg.structures import SegDataSample
|
||
|
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
|
||
|
OptSampleList, SampleList, add_prefix)
|
||
|
from ..utils import resize
|
||
|
from .encoder_decoder import EncoderDecoder
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class DepthEstimator(EncoderDecoder):
|
||
|
"""Encoder Decoder depth estimator.
|
||
|
|
||
|
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
|
||
|
Note that auxiliary_head is only used for deep supervision during training,
|
||
|
which could be dumped during inference.
|
||
|
|
||
|
1. The ``loss`` method is used to calculate the loss of model,
|
||
|
which includes two steps: (1) Extracts features to obtain the feature maps
|
||
|
(2) Call the decode head loss function to forward decode head model and
|
||
|
calculate losses.
|
||
|
|
||
|
.. code:: text
|
||
|
|
||
|
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
|
||
|
_decode_head_forward_train(): decode_head.loss()
|
||
|
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
|
||
|
|
||
|
2. The ``predict`` method is used to predict depth estimation results,
|
||
|
which includes two steps: (1) Run inference function to obtain the list of
|
||
|
depth (2) Call post-processing function to obtain list of
|
||
|
``SegDataSample`` including ``pred_depth_map``.
|
||
|
|
||
|
.. code:: text
|
||
|
|
||
|
predict(): inference() -> postprocess_result()
|
||
|
inference(): whole_inference()/slide_inference()
|
||
|
whole_inference()/slide_inference(): encoder_decoder()
|
||
|
encoder_decoder(): extract_feat() -> decode_head.predict()
|
||
|
|
||
|
3. The ``_forward`` method is used to output the tensor by running the model,
|
||
|
which includes two steps: (1) Extracts features to obtain the feature maps
|
||
|
(2)Call the decode head forward function to forward decode head model.
|
||
|
|
||
|
.. code:: text
|
||
|
|
||
|
_forward(): extract_feat() -> _decode_head.forward()
|
||
|
|
||
|
Args:
|
||
|
|
||
|
backbone (ConfigType): The config for the backnone of depth estimator.
|
||
|
decode_head (ConfigType): The config for the decode head of depth estimator.
|
||
|
neck (OptConfigType): The config for the neck of depth estimator.
|
||
|
Defaults to None.
|
||
|
auxiliary_head (OptConfigType): The config for the auxiliary head of
|
||
|
depth estimator. Defaults to None.
|
||
|
train_cfg (OptConfigType): The config for training. Defaults to None.
|
||
|
test_cfg (OptConfigType): The config for testing. Defaults to None.
|
||
|
data_preprocessor (dict, optional): The pre-process config of
|
||
|
:class:`BaseDataPreprocessor`.
|
||
|
pretrained (str, optional): The path for pretrained model.
|
||
|
Defaults to None.
|
||
|
init_cfg (dict, optional): The weight initialized config for
|
||
|
:class:`BaseModule`.
|
||
|
""" # noqa: E501
|
||
|
|
||
|
def __init__(self,
|
||
|
backbone: ConfigType,
|
||
|
decode_head: ConfigType,
|
||
|
neck: OptConfigType = None,
|
||
|
auxiliary_head: OptConfigType = None,
|
||
|
train_cfg: OptConfigType = None,
|
||
|
test_cfg: OptConfigType = None,
|
||
|
data_preprocessor: OptConfigType = None,
|
||
|
pretrained: Optional[str] = None,
|
||
|
init_cfg: OptMultiConfig = None):
|
||
|
super().__init__(
|
||
|
backbone=backbone,
|
||
|
decode_head=decode_head,
|
||
|
neck=neck,
|
||
|
auxiliary_head=auxiliary_head,
|
||
|
train_cfg=train_cfg,
|
||
|
test_cfg=test_cfg,
|
||
|
data_preprocessor=data_preprocessor,
|
||
|
pretrained=pretrained,
|
||
|
init_cfg=init_cfg)
|
||
|
|
||
|
def extract_feat(self,
|
||
|
inputs: Tensor,
|
||
|
batch_img_metas: Optional[List[dict]] = None) -> Tensor:
|
||
|
"""Extract features from images."""
|
||
|
|
||
|
if getattr(self.backbone, 'class_embed_select', False) and \
|
||
|
isinstance(batch_img_metas, list) and \
|
||
|
'category_id' in batch_img_metas[0]:
|
||
|
cat_ids = [meta['category_id'] for meta in batch_img_metas]
|
||
|
cat_ids = torch.tensor(cat_ids).to(inputs.device)
|
||
|
inputs = (inputs, cat_ids)
|
||
|
|
||
|
x = self.backbone(inputs)
|
||
|
if self.with_neck:
|
||
|
x = self.neck(x)
|
||
|
return x
|
||
|
|
||
|
def encode_decode(self, inputs: Tensor,
|
||
|
batch_img_metas: List[dict]) -> Tensor:
|
||
|
"""Encode images with backbone and decode into a depth map of the same
|
||
|
size as input."""
|
||
|
x = self.extract_feat(inputs, batch_img_metas)
|
||
|
depth = self.decode_head.predict(x, batch_img_metas, self.test_cfg)
|
||
|
|
||
|
return depth
|
||
|
|
||
|
def _decode_head_forward_train(self, inputs: List[Tensor],
|
||
|
data_samples: SampleList) -> dict:
|
||
|
"""Run forward function and calculate loss for decode head in
|
||
|
training."""
|
||
|
losses = dict()
|
||
|
loss_decode = self.decode_head.loss(inputs, data_samples,
|
||
|
self.train_cfg)
|
||
|
|
||
|
losses.update(add_prefix(loss_decode, 'decode'))
|
||
|
return losses
|
||
|
|
||
|
def _auxiliary_head_forward_train(self, inputs: List[Tensor],
|
||
|
data_samples: SampleList) -> dict:
|
||
|
"""Run forward function and calculate loss for auxiliary head in
|
||
|
training."""
|
||
|
losses = dict()
|
||
|
if isinstance(self.auxiliary_head, nn.ModuleList):
|
||
|
for idx, aux_head in enumerate(self.auxiliary_head):
|
||
|
loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
|
||
|
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
|
||
|
else:
|
||
|
loss_aux = self.auxiliary_head.loss(inputs, data_samples,
|
||
|
self.train_cfg)
|
||
|
losses.update(add_prefix(loss_aux, 'aux'))
|
||
|
|
||
|
return losses
|
||
|
|
||
|
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
|
||
|
"""Calculate losses from a batch of inputs and data samples.
|
||
|
|
||
|
Args:
|
||
|
inputs (Tensor): Input images.
|
||
|
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
|
||
|
It usually includes information such as `metainfo` and
|
||
|
`gt_depth_map`.
|
||
|
|
||
|
Returns:
|
||
|
dict[str, Tensor]: a dictionary of loss components
|
||
|
"""
|
||
|
if data_samples is not None:
|
||
|
batch_img_metas = [
|
||
|
data_sample.metainfo for data_sample in data_samples
|
||
|
]
|
||
|
else:
|
||
|
batch_img_metas = [
|
||
|
dict(
|
||
|
ori_shape=inputs.shape[2:],
|
||
|
img_shape=inputs.shape[2:],
|
||
|
pad_shape=inputs.shape[2:],
|
||
|
padding_size=[0, 0, 0, 0])
|
||
|
] * inputs.shape[0]
|
||
|
|
||
|
x = self.extract_feat(inputs, batch_img_metas)
|
||
|
|
||
|
losses = dict()
|
||
|
|
||
|
loss_decode = self._decode_head_forward_train(x, data_samples)
|
||
|
losses.update(loss_decode)
|
||
|
|
||
|
if self.with_auxiliary_head:
|
||
|
loss_aux = self._auxiliary_head_forward_train(x, data_samples)
|
||
|
losses.update(loss_aux)
|
||
|
|
||
|
return losses
|
||
|
|
||
|
def predict(self,
|
||
|
inputs: Tensor,
|
||
|
data_samples: OptSampleList = None) -> SampleList:
|
||
|
"""Predict results from a batch of inputs and data samples with post-
|
||
|
processing.
|
||
|
|
||
|
Args:
|
||
|
inputs (Tensor): Inputs with shape (N, C, H, W).
|
||
|
data_samples (List[:obj:`SegDataSample`], optional): The seg data
|
||
|
samples. It usually includes information such as `metainfo`
|
||
|
and `gt_depth_map`.
|
||
|
|
||
|
Returns:
|
||
|
list[:obj:`SegDataSample`]: Depth estimation results of the
|
||
|
input images. Each SegDataSample usually contain:
|
||
|
|
||
|
- ``pred_depth_max``(PixelData): Prediction of depth estimation.
|
||
|
"""
|
||
|
if data_samples is not None:
|
||
|
batch_img_metas = [
|
||
|
data_sample.metainfo for data_sample in data_samples
|
||
|
]
|
||
|
else:
|
||
|
batch_img_metas = [
|
||
|
dict(
|
||
|
ori_shape=inputs.shape[2:],
|
||
|
img_shape=inputs.shape[2:],
|
||
|
pad_shape=inputs.shape[2:],
|
||
|
padding_size=[0, 0, 0, 0])
|
||
|
] * inputs.shape[0]
|
||
|
|
||
|
depth = self.inference(inputs, batch_img_metas)
|
||
|
|
||
|
return self.postprocess_result(depth, data_samples)
|
||
|
|
||
|
def _forward(self,
|
||
|
inputs: Tensor,
|
||
|
data_samples: OptSampleList = None) -> Tensor:
|
||
|
"""Network forward process.
|
||
|
|
||
|
Args:
|
||
|
inputs (Tensor): Inputs with shape (N, C, H, W).
|
||
|
data_samples (List[:obj:`SegDataSample`]): The seg
|
||
|
data samples. It usually includes information such
|
||
|
as `metainfo` and `gt_depth_map`.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Forward output of model without any post-processes.
|
||
|
"""
|
||
|
x = self.extract_feat(inputs)
|
||
|
return self.decode_head.forward(x)
|
||
|
|
||
|
def slide_flip_inference(self, inputs: Tensor,
|
||
|
batch_img_metas: List[dict]) -> Tensor:
|
||
|
"""Inference by sliding-window with overlap and flip.
|
||
|
|
||
|
If h_crop > h_img or w_crop > w_img, the small patch will be used to
|
||
|
decode without padding.
|
||
|
|
||
|
Args:
|
||
|
inputs (tensor): the tensor should have a shape NxCxHxW,
|
||
|
which contains all images in the batch.
|
||
|
batch_img_metas (List[dict]): List of image metainfo where each may
|
||
|
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
|
||
|
'ori_shape', and 'pad_shape'.
|
||
|
For details on the values of these keys see
|
||
|
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The depth estimation results.
|
||
|
"""
|
||
|
|
||
|
h_stride, w_stride = self.test_cfg.stride
|
||
|
h_crop, w_crop = self.test_cfg.crop_size
|
||
|
batch_size, _, h_img, w_img = inputs.size()
|
||
|
out_channels = self.out_channels
|
||
|
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
|
||
|
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
|
||
|
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
|
||
|
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
|
||
|
for h_idx in range(h_grids):
|
||
|
for w_idx in range(w_grids):
|
||
|
y1 = h_idx * h_stride
|
||
|
x1 = w_idx * w_stride
|
||
|
y2 = min(y1 + h_crop, h_img)
|
||
|
x2 = min(x1 + w_crop, w_img)
|
||
|
y1 = max(y2 - h_crop, 0)
|
||
|
x1 = max(x2 - w_crop, 0)
|
||
|
crop_img = inputs[:, :, y1:y2, x1:x2]
|
||
|
# change the image shape to patch shape
|
||
|
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
|
||
|
# the output of encode_decode is depth tensor map
|
||
|
# with shape [N, C, H, W]
|
||
|
crop_depth_map = self.encode_decode(crop_img, batch_img_metas)
|
||
|
|
||
|
# average out the original and flipped prediction
|
||
|
crop_depth_map_flip = self.encode_decode(
|
||
|
crop_img.flip(dims=(3, )), batch_img_metas)
|
||
|
crop_depth_map_flip = crop_depth_map_flip.flip(dims=(3, ))
|
||
|
crop_depth_map = (crop_depth_map + crop_depth_map_flip) / 2.0
|
||
|
|
||
|
preds += F.pad(crop_depth_map,
|
||
|
(int(x1), int(preds.shape[3] - x2), int(y1),
|
||
|
int(preds.shape[2] - y2)))
|
||
|
|
||
|
count_mat[:, :, y1:y2, x1:x2] += 1
|
||
|
assert (count_mat == 0).sum() == 0
|
||
|
depth = preds / count_mat
|
||
|
|
||
|
return depth
|
||
|
|
||
|
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
|
||
|
"""Inference with slide/whole style.
|
||
|
|
||
|
Args:
|
||
|
inputs (Tensor): The input image of shape (N, 3, H, W).
|
||
|
batch_img_metas (List[dict]): List of image metainfo where each may
|
||
|
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
|
||
|
'ori_shape', 'pad_shape', and 'padding_size'.
|
||
|
For details on the values of these keys see
|
||
|
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The depth estimation results.
|
||
|
"""
|
||
|
assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole',
|
||
|
'slide_flip'], \
|
||
|
f'Only "slide", "slide_flip" or "whole" test mode are ' \
|
||
|
f'supported, but got {self.test_cfg["mode"]}.'
|
||
|
ori_shape = batch_img_metas[0]['ori_shape']
|
||
|
if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
|
||
|
print_log(
|
||
|
'Image shapes are different in the batch.',
|
||
|
logger='current',
|
||
|
level=logging.WARN)
|
||
|
if self.test_cfg.mode == 'slide':
|
||
|
depth_map = self.slide_inference(inputs, batch_img_metas)
|
||
|
if self.test_cfg.mode == 'slide_flip':
|
||
|
depth_map = self.slide_flip_inference(inputs, batch_img_metas)
|
||
|
else:
|
||
|
depth_map = self.whole_inference(inputs, batch_img_metas)
|
||
|
|
||
|
return depth_map
|
||
|
|
||
|
def postprocess_result(self,
|
||
|
depth: Tensor,
|
||
|
data_samples: OptSampleList = None) -> SampleList:
|
||
|
""" Convert results list to `SegDataSample`.
|
||
|
Args:
|
||
|
depth (Tensor): The depth estimation results.
|
||
|
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
|
||
|
It usually includes information such as `metainfo` and
|
||
|
`gt_depth_map`. Default to None.
|
||
|
Returns:
|
||
|
list[:obj:`SegDataSample`]: Depth estomation results of the
|
||
|
input images. Each SegDataSample usually contain:
|
||
|
|
||
|
- ``pred_depth_map``(PixelData): Prediction of depth estimation.
|
||
|
"""
|
||
|
batch_size, C, H, W = depth.shape
|
||
|
|
||
|
if data_samples is None:
|
||
|
data_samples = [SegDataSample() for _ in range(batch_size)]
|
||
|
only_prediction = True
|
||
|
else:
|
||
|
only_prediction = False
|
||
|
|
||
|
for i in range(batch_size):
|
||
|
if not only_prediction:
|
||
|
img_meta = data_samples[i].metainfo
|
||
|
# remove padding area
|
||
|
if 'img_padding_size' not in img_meta:
|
||
|
padding_size = img_meta.get('padding_size', [0] * 4)
|
||
|
else:
|
||
|
padding_size = img_meta['img_padding_size']
|
||
|
padding_left, padding_right, padding_top, padding_bottom =\
|
||
|
padding_size
|
||
|
# i_depth shape is 1, C, H, W after remove padding
|
||
|
i_depth = depth[i:i + 1, :, padding_top:H - padding_bottom,
|
||
|
padding_left:W - padding_right]
|
||
|
|
||
|
flip = img_meta.get('flip', None)
|
||
|
if flip:
|
||
|
flip_direction = img_meta.get('flip_direction', None)
|
||
|
assert flip_direction in ['horizontal', 'vertical']
|
||
|
if flip_direction == 'horizontal':
|
||
|
i_depth = i_depth.flip(dims=(3, ))
|
||
|
else:
|
||
|
i_depth = i_depth.flip(dims=(2, ))
|
||
|
|
||
|
# resize as original shape
|
||
|
i_depth = resize(
|
||
|
i_depth,
|
||
|
size=img_meta['ori_shape'],
|
||
|
mode='bilinear',
|
||
|
align_corners=self.align_corners,
|
||
|
warning=False).squeeze(0)
|
||
|
else:
|
||
|
i_depth = depth[i]
|
||
|
|
||
|
data_samples[i].set_data(
|
||
|
{'pred_depth_map': PixelData(**{'data': i_depth})})
|
||
|
|
||
|
return data_samples
|