mmsegmentation/tests/test_apis/test_rs_inferencer.py

74 lines
2.4 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from unittest import TestCase
import numpy as np
from mmengine import ConfigDict, init_default_scope
from utils import * # noqa: F401, F403
from mmseg.apis import RSImage, RSInferencer
from mmseg.registry import MODELS
class TestRSImage(TestCase):
def test_read_whole_image(self):
init_default_scope('mmseg')
img_path = osp.join(
osp.dirname(__file__),
'../data/pseudo_loveda_dataset/img_dir/0.png')
rs_image = RSImage(img_path)
window_size = (16, 16)
rs_image.create_grids(window_size)
image_data = rs_image.read(rs_image.grids[0])
self.assertIsNotNone(image_data)
def test_write_image_data(self):
init_default_scope('mmseg')
img_path = osp.join(
osp.dirname(__file__),
'../data/pseudo_loveda_dataset/img_dir/0.png')
rs_image = RSImage(img_path)
window_size = (16, 16)
rs_image.create_grids(window_size)
data = np.random.random((16, 16)).astype(np.int8)
rs_image.write(data, rs_image.grids[0])
class TestRSInferencer(TestCase):
def test_read_and_inference(self):
init_default_scope('mmseg')
cfg_dict = dict(
model=dict(
type='InferExampleModel',
data_preprocessor=dict(type='SegDataPreProcessor'),
backbone=dict(type='InferExampleBackbone'),
decode_head=dict(type='InferExampleHead'),
test_cfg=dict(mode='whole')),
test_dataloader=dict(
dataset=dict(
type='ExampleDataset',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='PackSegInputs')
])),
test_pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='PackSegInputs')
])
cfg = ConfigDict(cfg_dict)
model = MODELS.build(cfg.model)
model.cfg = cfg
inferencer = RSInferencer.from_model(model)
img_path = osp.join(
osp.dirname(__file__),
'../data/pseudo_loveda_dataset/img_dir/0.png')
rs_image = RSImage(img_path)
window_size = (16, 16)
stride = (16, 16)
inferencer.run(rs_image, window_size, stride)