mmsegmentation/mmseg/models/decode_heads/fcn_head.py

97 lines
3.3 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
2020-07-07 20:52:19 +08:00
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
2022-05-10 20:15:20 +08:00
from mmseg.registry import MODELS
2020-07-07 20:52:19 +08:00
from .decode_head import BaseDecodeHead
2022-05-10 20:15:20 +08:00
@MODELS.register_module()
2020-07-07 20:52:19 +08:00
class FCNHead(BaseDecodeHead):
"""Fully Convolution Networks for Semantic Segmentation.
This head is implemented of `FCNNet <https://arxiv.org/abs/1411.4038>`_.
Args:
num_convs (int): Number of convs in the head. Default: 2.
kernel_size (int): The kernel size for convs in the head. Default: 3.
concat_input (bool): Whether concat the input and output of convs
before classification layer.
dilation (int): The dilation rate for convs in the head. Default: 1.
2020-07-07 20:52:19 +08:00
"""
def __init__(self,
num_convs=2,
kernel_size=3,
concat_input=True,
dilation=1,
2020-07-07 20:52:19 +08:00
**kwargs):
assert num_convs >= 0 and dilation > 0 and isinstance(dilation, int)
2020-07-07 20:52:19 +08:00
self.num_convs = num_convs
self.concat_input = concat_input
Fast-SCNN implemented (#58) * init commit: fast_scnn * 247917iters * 4x8_80k * configs placed in configs_unify. 4x8_80k exp.running. * mmseg/utils/collect_env.py modified to support Windows * study on lr * bug in configs_unify/***/cityscapes.py fixed. * lr0.08_100k * lr_power changed to 1.2 * log_config by_epoch set to False. * lr1.2 * doc strings added * add fast_scnn backbone test * 80k 0.08,0.12 * add 450k * fast_scnn test: fix BN bug. * Add different config files into configs/ * .gitignore recovered. * configs_unify del * .gitignore recovered. * delete sub-optimal config files of fast-scnn * Code style improved. * add docstrings to component modules of fast-scnn * relevant files modified according to Jerry's instructions * relevant files modified according to Jerry's instructions * lint problems fixed. * fast_scnn config extremely simplified. * InvertedResidual * fixed padding problems * add unit test for inverted_residual * add unit test for inverted_residual: debug 0 * add unit test for inverted_residual: debug 1 * add unit test for inverted_residual: debug 2 * add unit test for inverted_residual: debug 3 * add unit test for sep_fcn_head: debug 0 * add unit test for sep_fcn_head: debug 1 * add unit test for sep_fcn_head: debug 2 * add unit test for sep_fcn_head: debug 3 * add unit test for sep_fcn_head: debug 4 * add unit test for sep_fcn_head: debug 5 * FastSCNN type(dwchannels) changed to tuple. * t changed to expand_ratio. * Spaces fixed. * Update mmseg/models/backbones/fast_scnn.py Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com> * Update mmseg/models/decode_heads/sep_fcn_head.py Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com> * Update mmseg/models/decode_heads/sep_fcn_head.py Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com> * Docstrings fixed. * Docstrings fixed. * Inverted Residual kept coherent with mmcl. * Inverted Residual kept coherent with mmcl. Debug 0 * _make_layer parameters renamed. * final commit * Arg scale_factor deleted. * Expand_ratio docstrings updated. * final commit * Readme for Fast-SCNN added. * model-zoo.md modified. * fast_scnn README updated. * Move InvertedResidual module into mmseg/utils. * test_inverted_residual module corrected. * test_inverted_residual.py moved. * encoder_decoder modified to avoid bugs when running PSPNet. getting_started.md bug fixed. * Revert "encoder_decoder modified to avoid bugs when running PSPNet. " This reverts commit dd0aadfb Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>
2020-08-18 23:33:05 +08:00
self.kernel_size = kernel_size
2020-07-07 20:52:19 +08:00
super(FCNHead, self).__init__(**kwargs)
if num_convs == 0:
assert self.in_channels == self.channels
conv_padding = (kernel_size // 2) * dilation
2020-07-07 20:52:19 +08:00
convs = []
convs.append(
ConvModule(
self.in_channels,
self.channels,
kernel_size=kernel_size,
padding=conv_padding,
dilation=dilation,
2020-07-07 20:52:19 +08:00
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
for i in range(num_convs - 1):
convs.append(
ConvModule(
self.channels,
self.channels,
kernel_size=kernel_size,
padding=conv_padding,
dilation=dilation,
2020-07-07 20:52:19 +08:00
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
if num_convs == 0:
self.convs = nn.Identity()
else:
self.convs = nn.Sequential(*convs)
2020-07-07 20:52:19 +08:00
if self.concat_input:
self.conv_cat = ConvModule(
self.in_channels + self.channels,
self.channels,
kernel_size=kernel_size,
padding=kernel_size // 2,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def _forward_feature(self, inputs):
"""Forward function for feature maps before classifying each pixel with
``self.cls_seg`` fc.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
feats (Tensor): A tensor of shape (batch_size, self.channels,
H, W) which is feature map for last layer of decoder head.
"""
2020-07-07 20:52:19 +08:00
x = self._transform_inputs(inputs)
feats = self.convs(x)
2020-07-07 20:52:19 +08:00
if self.concat_input:
feats = self.conv_cat(torch.cat([x, feats], dim=1))
return feats
def forward(self, inputs):
"""Forward function."""
output = self._forward_feature(inputs)
2020-07-07 20:52:19 +08:00
output = self.cls_seg(output)
return output