2020-07-07 20:52:19 +08:00
|
|
|
import warnings
|
|
|
|
from abc import ABCMeta, abstractmethod
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
import mmcv
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
2021-06-17 12:41:29 +08:00
|
|
|
from mmcv.runner import BaseModule, auto_fp16
|
2020-07-07 20:52:19 +08:00
|
|
|
|
|
|
|
|
2021-06-17 12:41:29 +08:00
|
|
|
class BaseSegmentor(BaseModule, metaclass=ABCMeta):
|
2020-07-07 20:52:19 +08:00
|
|
|
"""Base class for segmentors."""
|
|
|
|
|
2021-06-17 12:41:29 +08:00
|
|
|
def __init__(self, init_cfg=None):
|
|
|
|
super(BaseSegmentor, self).__init__(init_cfg)
|
2020-07-20 15:17:18 +08:00
|
|
|
self.fp16_enabled = False
|
2020-07-07 20:52:19 +08:00
|
|
|
|
|
|
|
@property
|
|
|
|
def with_neck(self):
|
|
|
|
"""bool: whether the segmentor has neck"""
|
|
|
|
return hasattr(self, 'neck') and self.neck is not None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def with_auxiliary_head(self):
|
|
|
|
"""bool: whether the segmentor has auxiliary head"""
|
|
|
|
return hasattr(self,
|
|
|
|
'auxiliary_head') and self.auxiliary_head is not None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def with_decode_head(self):
|
|
|
|
"""bool: whether the segmentor has decode head"""
|
|
|
|
return hasattr(self, 'decode_head') and self.decode_head is not None
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def extract_feat(self, imgs):
|
|
|
|
"""Placeholder for extract features from images."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def encode_decode(self, img, img_metas):
|
|
|
|
"""Placeholder for encode images with backbone and decode into a
|
|
|
|
semantic segmentation map of the same size as input."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def forward_train(self, imgs, img_metas, **kwargs):
|
|
|
|
"""Placeholder for Forward function for training."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def simple_test(self, img, img_meta, **kwargs):
|
|
|
|
"""Placeholder for single image test."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def aug_test(self, imgs, img_metas, **kwargs):
|
|
|
|
"""Placeholder for augmentation test."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def forward_test(self, imgs, img_metas, **kwargs):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
imgs (List[Tensor]): the outer list indicates test-time
|
|
|
|
augmentations and inner Tensor should have a shape NxCxHxW,
|
|
|
|
which contains all images in the batch.
|
|
|
|
img_metas (List[List[dict]]): the outer list indicates test-time
|
|
|
|
augs (multiscale, flip, etc.) and the inner list indicates
|
|
|
|
images in a batch.
|
|
|
|
"""
|
|
|
|
for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:
|
|
|
|
if not isinstance(var, list):
|
|
|
|
raise TypeError(f'{name} must be a list, but got '
|
|
|
|
f'{type(var)}')
|
|
|
|
|
|
|
|
num_augs = len(imgs)
|
|
|
|
if num_augs != len(img_metas):
|
|
|
|
raise ValueError(f'num of augmentations ({len(imgs)}) != '
|
|
|
|
f'num of image meta ({len(img_metas)})')
|
|
|
|
# all images in the same aug batch all of the same ori_shape and pad
|
|
|
|
# shape
|
|
|
|
for img_meta in img_metas:
|
|
|
|
ori_shapes = [_['ori_shape'] for _ in img_meta]
|
|
|
|
assert all(shape == ori_shapes[0] for shape in ori_shapes)
|
|
|
|
img_shapes = [_['img_shape'] for _ in img_meta]
|
|
|
|
assert all(shape == img_shapes[0] for shape in img_shapes)
|
|
|
|
pad_shapes = [_['pad_shape'] for _ in img_meta]
|
|
|
|
assert all(shape == pad_shapes[0] for shape in pad_shapes)
|
|
|
|
|
|
|
|
if num_augs == 1:
|
|
|
|
return self.simple_test(imgs[0], img_metas[0], **kwargs)
|
|
|
|
else:
|
|
|
|
return self.aug_test(imgs, img_metas, **kwargs)
|
|
|
|
|
2020-07-20 15:17:18 +08:00
|
|
|
@auto_fp16(apply_to=('img', ))
|
2020-07-07 20:52:19 +08:00
|
|
|
def forward(self, img, img_metas, return_loss=True, **kwargs):
|
|
|
|
"""Calls either :func:`forward_train` or :func:`forward_test` depending
|
|
|
|
on whether ``return_loss`` is ``True``.
|
|
|
|
|
|
|
|
Note this setting will change the expected inputs. When
|
|
|
|
``return_loss=True``, img and img_meta are single-nested (i.e. Tensor
|
|
|
|
and List[dict]), and when ``resturn_loss=False``, img and img_meta
|
|
|
|
should be double nested (i.e. List[Tensor], List[List[dict]]), with
|
|
|
|
the outer list indicating test time augmentations.
|
|
|
|
"""
|
|
|
|
if return_loss:
|
|
|
|
return self.forward_train(img, img_metas, **kwargs)
|
|
|
|
else:
|
|
|
|
return self.forward_test(img, img_metas, **kwargs)
|
|
|
|
|
|
|
|
def train_step(self, data_batch, optimizer, **kwargs):
|
|
|
|
"""The iteration step during training.
|
|
|
|
|
|
|
|
This method defines an iteration step during training, except for the
|
|
|
|
back propagation and optimizer updating, which are done in an optimizer
|
|
|
|
hook. Note that in some complicated cases or models, the whole process
|
|
|
|
including back propagation and optimizer updating is also defined in
|
|
|
|
this method, such as GAN.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data (dict): The output of dataloader.
|
|
|
|
optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of
|
|
|
|
runner is passed to ``train_step()``. This argument is unused
|
|
|
|
and reserved.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: It should contain at least 3 keys: ``loss``, ``log_vars``,
|
|
|
|
``num_samples``.
|
|
|
|
``loss`` is a tensor for back propagation, which can be a
|
|
|
|
weighted sum of multiple losses.
|
|
|
|
``log_vars`` contains all the variables to be sent to the
|
|
|
|
logger.
|
|
|
|
``num_samples`` indicates the batch size (when the model is
|
|
|
|
DDP, it means the batch size on each GPU), which is used for
|
|
|
|
averaging the logs.
|
|
|
|
"""
|
2020-07-20 15:17:18 +08:00
|
|
|
losses = self(**data_batch)
|
2020-07-07 20:52:19 +08:00
|
|
|
loss, log_vars = self._parse_losses(losses)
|
|
|
|
|
|
|
|
outputs = dict(
|
|
|
|
loss=loss,
|
|
|
|
log_vars=log_vars,
|
2021-04-29 16:01:34 +08:00
|
|
|
num_samples=len(data_batch['img_metas']))
|
2020-07-07 20:52:19 +08:00
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def val_step(self, data_batch, **kwargs):
|
|
|
|
"""The iteration step during validation.
|
|
|
|
|
|
|
|
This method shares the same signature as :func:`train_step`, but used
|
|
|
|
during val epochs. Note that the evaluation after training epochs is
|
|
|
|
not implemented with this method, but an evaluation hook.
|
|
|
|
"""
|
2020-07-20 15:17:18 +08:00
|
|
|
output = self(**data_batch, **kwargs)
|
2020-07-07 20:52:19 +08:00
|
|
|
return output
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _parse_losses(losses):
|
|
|
|
"""Parse the raw outputs (losses) of the network.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
losses (dict): Raw output of the network, which usually contain
|
|
|
|
losses and other necessary information.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor
|
|
|
|
which may be a weighted sum of all losses, log_vars contains
|
|
|
|
all the variables to be sent to the logger.
|
|
|
|
"""
|
|
|
|
log_vars = OrderedDict()
|
|
|
|
for loss_name, loss_value in losses.items():
|
|
|
|
if isinstance(loss_value, torch.Tensor):
|
|
|
|
log_vars[loss_name] = loss_value.mean()
|
|
|
|
elif isinstance(loss_value, list):
|
|
|
|
log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
|
|
|
|
else:
|
|
|
|
raise TypeError(
|
|
|
|
f'{loss_name} is not a tensor or list of tensors')
|
|
|
|
|
|
|
|
loss = sum(_value for _key, _value in log_vars.items()
|
|
|
|
if 'loss' in _key)
|
|
|
|
|
|
|
|
log_vars['loss'] = loss
|
|
|
|
for loss_name, loss_value in log_vars.items():
|
|
|
|
# reduce loss when distributed training
|
|
|
|
if dist.is_available() and dist.is_initialized():
|
|
|
|
loss_value = loss_value.data.clone()
|
|
|
|
dist.all_reduce(loss_value.div_(dist.get_world_size()))
|
|
|
|
log_vars[loss_name] = loss_value.item()
|
|
|
|
|
|
|
|
return loss, log_vars
|
|
|
|
|
|
|
|
def show_result(self,
|
|
|
|
img,
|
|
|
|
result,
|
|
|
|
palette=None,
|
|
|
|
win_name='',
|
|
|
|
show=False,
|
|
|
|
wait_time=0,
|
2021-03-23 11:34:38 +08:00
|
|
|
out_file=None,
|
|
|
|
opacity=0.5):
|
2020-07-07 20:52:19 +08:00
|
|
|
"""Draw `result` over `img`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img (str or Tensor): The image to be displayed.
|
|
|
|
result (Tensor): The semantic segmentation results to draw over
|
|
|
|
`img`.
|
|
|
|
palette (list[list[int]]] | np.ndarray | None): The palette of
|
|
|
|
segmentation map. If None is given, random palette will be
|
|
|
|
generated. Default: None
|
|
|
|
win_name (str): The window name.
|
|
|
|
wait_time (int): Value of waitKey param.
|
|
|
|
Default: 0.
|
|
|
|
show (bool): Whether to show the image.
|
|
|
|
Default: False.
|
|
|
|
out_file (str or None): The filename to write the image.
|
|
|
|
Default: None.
|
2021-03-23 11:34:38 +08:00
|
|
|
opacity(float): Opacity of painted segmentation map.
|
|
|
|
Default 0.5.
|
|
|
|
Must be in (0, 1] range.
|
2020-07-07 20:52:19 +08:00
|
|
|
Returns:
|
|
|
|
img (Tensor): Only if not `show` or `out_file`
|
|
|
|
"""
|
|
|
|
img = mmcv.imread(img)
|
|
|
|
img = img.copy()
|
|
|
|
seg = result[0]
|
|
|
|
if palette is None:
|
|
|
|
if self.PALETTE is None:
|
|
|
|
palette = np.random.randint(
|
|
|
|
0, 255, size=(len(self.CLASSES), 3))
|
|
|
|
else:
|
|
|
|
palette = self.PALETTE
|
2020-07-23 13:01:31 +08:00
|
|
|
palette = np.array(palette)
|
2020-07-07 20:52:19 +08:00
|
|
|
assert palette.shape[0] == len(self.CLASSES)
|
|
|
|
assert palette.shape[1] == 3
|
|
|
|
assert len(palette.shape) == 2
|
2021-03-23 11:34:38 +08:00
|
|
|
assert 0 < opacity <= 1.0
|
2020-07-07 20:52:19 +08:00
|
|
|
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
|
|
|
for label, color in enumerate(palette):
|
|
|
|
color_seg[seg == label, :] = color
|
|
|
|
# convert to BGR
|
|
|
|
color_seg = color_seg[..., ::-1]
|
|
|
|
|
2021-03-23 11:34:38 +08:00
|
|
|
img = img * (1 - opacity) + color_seg * opacity
|
2020-07-07 20:52:19 +08:00
|
|
|
img = img.astype(np.uint8)
|
|
|
|
# if out_file specified, do not show image in window
|
|
|
|
if out_file is not None:
|
|
|
|
show = False
|
|
|
|
|
|
|
|
if show:
|
|
|
|
mmcv.imshow(img, win_name, wait_time)
|
|
|
|
if out_file is not None:
|
|
|
|
mmcv.imwrite(img, out_file)
|
|
|
|
|
|
|
|
if not (show or out_file):
|
|
|
|
warnings.warn('show==False and out_file is not specified, only '
|
|
|
|
'result image will be returned')
|
|
|
|
return img
|