mmsegmentation/README.md

248 lines
13 KiB
Markdown
Raw Normal View History

2020-07-07 20:52:19 +08:00
<div align="center">
<img src="resources/mmseg-logo.png" width="600"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/)
[![PyPI](https://img.shields.io/pypi/v/mmsegmentation)](https://pypi.org/project/mmsegmentation)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/en/1.x/)
[![badge](https://github.com/open-mmlab/mmsegmentation/workflows/build/badge.svg)](https://github.com/open-mmlab/mmsegmentation/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmsegmentation/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmsegmentation)
[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/1.x/LICENSE)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
Documentation: <https://mmsegmentation.readthedocs.io/en/1.x/>
2020-07-07 20:52:19 +08:00
2021-02-22 03:11:28 +08:00
English | [简体中文](README_zh-CN.md)
</div>
<div align="center">
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218352562-cdded397-b0f3-4ca1-b8dd-a60df8dca75b.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
</div>
2020-07-07 20:52:19 +08:00
## Introduction
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch.
It is a part of the OpenMMLab project.
The 1.x branch works with **PyTorch 1.6+**.
2020-07-07 20:52:19 +08:00
![demo image](resources/seg_demo.gif)
### Major features
- **Unified Benchmark**
We provide a unified benchmark toolbox for various semantic segmentation methods.
- **Modular Design**
We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.
- **Support of multiple methods out of box**
The toolbox directly supports popular and contemporary semantic segmentation frameworks, *e.g.* PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.
- **High efficiency**
The training speed is faster than or comparable to other codebases.
## What's New
2020-07-07 20:52:19 +08:00
2023-03-03 16:54:12 +08:00
v1.0.0rc6 was released on 03/03/2023.
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
2023-03-03 16:54:12 +08:00
- Support MMSegInferencer ([#2413](https://github.com/open-mmlab/mmsegmentation/pull/2413), [#2658](https://github.com/open-mmlab/mmsegmentation/pull/2658))
- Support REFUGE dataset ([#2554](https://github.com/open-mmlab/mmsegmentation/pull/2554))
## Installation
2022-09-05 12:20:52 +08:00
Please refer to [get_started.md](docs/en/get_started.md#installation) for installation and [dataset_prepare.md](docs/en/user_guides/2_dataset_prepare.md#prepare-datasets) for dataset preparation.
## Get Started
2020-07-07 20:52:19 +08:00
Please see [Overview](docs/en/overview.md) for the general introduction of MMSegmentation.
Please see [user guides](https://mmsegmentation.readthedocs.io/en/1.x/user_guides/index.html#) for the basic usage of MMSegmentation.
There are also [advanced tutorials](https://mmsegmentation.readthedocs.io/en/dev-1.x/advanced_guides/index.html) for in-depth understanding of mmseg design and implementation .
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb) on Colab.
To migrate from MMSegmentation 1.x, please refer to [migration](docs/en/migration).
2020-07-07 20:52:19 +08:00
## Benchmark and model zoo
Results and models are available in the [model zoo](docs/en/model_zoo.md).
2020-07-07 20:52:19 +08:00
<details open>
<summary>Supported backbones:</summary>
- [x] ResNet (CVPR'2016)
- [x] ResNeXt (CVPR'2017)
- [x] [HRNet (CVPR'2019)](configs/hrnet)
- [x] [ResNeSt (ArXiv'2020)](configs/resnest)
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
- [x] [Vision Transformer (ICLR'2021)](configs/vit)
[Feature] Support Twins (NeurIPS2021) (#989) * debug * debug * debug * this is a debug step, and needs to be recovered * need recover * git * debug * git * git * git * git * git * git * debug need recover * debug * git * debug * debug * debug * debug * debug * debug * debug * debug * debugf * debug * debug * debug * debug * debug * debug * debug * debug * git * git * git * use config small/base/large * debug * debug * git * debug * git * debug * debug * debug args * debug * debug * git * git * debug * git * git * git * git * git * debug * debug * git * debug * git * debug * debug * debug * debug * git * debug * git * git * debug * debug * git * git * git * git * debug * debug * debug * debug * git * debug * debug * git * git * debug * debug * git * debug * debug * debug * git * debug * debug * debug * Please enter the commit message for your changes. Lines starting * git * git * debug * debug * debug * git * git * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * git * debug * debug * debug * debug * debug * debug * debug * git * fix pre-commit error * fix error * git * git * git * git * git * git * debug * debug * debug * debug * debug * debug * git * debug * debug * debug * debug * debug * debug * debug * debug * debug * git * git * git * debug * debug * debug * git * git * git * git * git * git * git * git * git * debug * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * fix unittest error * fix config errors * fix twins2mmseg bug * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * fix init_weights() in twins.py * git * git * git * git * fix comment * fix comment * fix comment * fix comment * fix unit test coverage in TwinsPR * Add Twins README * Add Twins README * twins refactor * twins refactor * delete init_cfg in FFN * delete init_cfg in FFN * Update mmseg/models/backbones/twins.py * Update mmseg/models/backbones/twins.py * Update mmseg/models/backbones/twins.py Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * Update mmseg/models/backbones/twins.py * add conference name Co-authored-by: linxinyang <linxinyang@meituan.com> Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-12-09 19:18:10 +08:00
- [x] [Swin Transformer (ICCV'2021)](configs/swin)
- [x] [Twins (NeurIPS'2021)](configs/twins)
- [x] [BEiT (ICLR'2022)](configs/beit)
2022-04-28 21:54:57 +08:00
- [x] [ConvNeXt (CVPR'2022)](configs/convnext)
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
- [x] [SegNeXt (NeurIPS'2022)](configs/segnext)
2020-07-07 20:52:19 +08:00
</details>
<details open>
<summary>Supported methods:</summary>
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
- [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
- [x] [PSANet (ECCV'2018)](configs/psanet)
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
- [x] [UPerNet (ECCV'2018)](configs/upernet)
- [x] [ICNet (ECCV'2018)](configs/icnet)
- [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
- [x] [EncNet (CVPR'2018)](configs/encnet)
- [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
- [x] [DANet (CVPR'2019)](configs/danet)
- [x] [APCNet (CVPR'2019)](configs/apcnet)
- [x] [EMANet (ICCV'2019)](configs/emanet)
- [x] [CCNet (ICCV'2019)](configs/ccnet)
- [x] [DMNet (ICCV'2019)](configs/dmnet)
- [x] [ANN (ICCV'2019)](configs/ann)
- [x] [GCNet (ICCVW'2019/TPAMI'2020)](configs/gcnet)
- [x] [FastFCN (ArXiv'2019)](configs/fastfcn)
- [x] [Fast-SCNN (ArXiv'2019)](configs/fastscnn)
- [x] [ISANet (ArXiv'2019/IJCV'2021)](configs/isanet)
- [x] [OCRNet (ECCV'2020)](configs/ocrnet)
- [x] [DNLNet (ECCV'2020)](configs/dnlnet)
- [x] [PointRend (CVPR'2020)](configs/point_rend)
- [x] [CGNet (TIP'2020)](configs/cgnet)
2021-10-13 11:35:58 +08:00
- [x] [BiSeNetV2 (IJCV'2021)](configs/bisenetv2)
- [x] [STDC (CVPR'2021)](configs/stdc)
- [x] [SETR (CVPR'2021)](configs/setr)
- [x] [DPT (ArXiv'2021)](configs/dpt)
[Feature] Support Segmenter (#955) * segmenter: add model * update * readme: update * config: update * segmenter: update readme * segmenter: update * segmenter: update * segmenter: update * configs: set checkpoint path to pretrain folder * segmenter: modify vit-s/lin, remove data config * rreadme: update * configs: transfer from _base_ to segmenter * configs: add 8x1 suffix * configs: remove redundant lines * configs: cleanup * first attempt * swipe CI error * Update mmseg/models/decode_heads/__init__.py Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * segmenter_linear: use fcn backbone * segmenter_mask: update * models: add segmenter vit * decoders: yapf+remove unused imports * apply precommit * segmenter/linear_head: fix * segmenter/linear_header: fix * segmenter: fix mask transformer * fix error * segmenter/mask_head: use trunc_normal init * refactor segmenter head * Fetch upstream (#1) * [Feature] Change options to cfg-option (#1129) * [Feature] Change option to cfg-option * add expire date and fix the docs * modify docstring * [Fix] Add <!-- [ABSTRACT] --> in metafile #1127 * [Fix] Fix correct num_classes of HRNet in LoveDA dataset #1136 * Bump to v0.20.1 (#1138) * bump version 0.20.1 * bump version 0.20.1 * [Fix] revise --option to --options #1140 Co-authored-by: Rockey <41846794+RockeyCoss@users.noreply.github.com> Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> * decode_head: switch from linear to fcn * fix init list formatting * configs: remove variants, keep only vit-s on ade * align inference metric of vit-s-mask * configs: add vit t/b/l * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * model_converters: use torch instead of einops * setup: remove einops * segmenter_mask: fix missing imports * add necessary imported init funtion * segmenter/seg-l: set resolution to 640 * segmenter/seg-l: fix test size * fix vitjax2mmseg * add README and unittest * fix unittest * add docstring * refactor config and add pretrained link * fix typo * add paper name in readme * change segmenter config names * fix typo in readme * fix typos in readme * fix segmenter typo * fix segmenter typo * delete redundant comma in config files * delete redundant comma in config files * fix convert script * update lateset master version Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> Co-authored-by: Rockey <41846794+RockeyCoss@users.noreply.github.com> Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
2022-01-26 13:50:51 +08:00
- [x] [Segmenter (ICCV'2021)](configs/segmenter)
[Feature] Support Twins (NeurIPS2021) (#989) * debug * debug * debug * this is a debug step, and needs to be recovered * need recover * git * debug * git * git * git * git * git * git * debug need recover * debug * git * debug * debug * debug * debug * debug * debug * debug * debug * debugf * debug * debug * debug * debug * debug * debug * debug * debug * git * git * git * use config small/base/large * debug * debug * git * debug * git * debug * debug * debug args * debug * debug * git * git * debug * git * git * git * git * git * debug * debug * git * debug * git * debug * debug * debug * debug * git * debug * git * git * debug * debug * git * git * git * git * debug * debug * debug * debug * git * debug * debug * git * git * debug * debug * git * debug * debug * debug * git * debug * debug * debug * Please enter the commit message for your changes. Lines starting * git * git * debug * debug * debug * git * git * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * git * debug * debug * debug * debug * debug * debug * debug * git * fix pre-commit error * fix error * git * git * git * git * git * git * debug * debug * debug * debug * debug * debug * git * debug * debug * debug * debug * debug * debug * debug * debug * debug * git * git * git * debug * debug * debug * git * git * git * git * git * git * git * git * git * debug * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * fix unittest error * fix config errors * fix twins2mmseg bug * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * git * fix init_weights() in twins.py * git * git * git * git * fix comment * fix comment * fix comment * fix comment * fix unit test coverage in TwinsPR * Add Twins README * Add Twins README * twins refactor * twins refactor * delete init_cfg in FFN * delete init_cfg in FFN * Update mmseg/models/backbones/twins.py * Update mmseg/models/backbones/twins.py * Update mmseg/models/backbones/twins.py Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * Update mmseg/models/backbones/twins.py * add conference name Co-authored-by: linxinyang <linxinyang@meituan.com> Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-12-09 19:18:10 +08:00
- [x] [SegFormer (NeurIPS'2021)](configs/segformer)
- [x] [K-Net (NeurIPS'2021)](configs/knet)
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
2020-07-07 20:52:19 +08:00
</details>
<details open>
<summary>Supported datasets:</summary>
2022-09-05 12:20:52 +08:00
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isaid)
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
</details>
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.
2020-07-07 20:52:19 +08:00
## Projects
[Here](projects/README.md) are some implementations of SOTA models and solutions built on MMSegmentation, which are supported and maintained by community users. These projects demonstrate the best practices based on MMSegmentation for research and product development. We welcome and appreciate all the contributions to OpenMMLab ecosystem.
## Contributing
2020-07-07 20:52:19 +08:00
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
2020-07-07 20:52:19 +08:00
## Acknowledgement
MMSegmentation is an open source project that welcome any contribution and feedback.
We wish that the toolbox and benchmark could serve the growing research
community by providing a flexible as well as standardized toolkit to reimplement existing methods
and develop their own new semantic segmentation methods.
2021-01-05 15:52:40 +08:00
## Citation
If you find this project useful in your research, please consider cite:
```bibtex
2021-01-05 15:52:40 +08:00
@misc{mmseg2020,
2021-02-22 03:11:28 +08:00
title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
2021-01-05 15:52:40 +08:00
author={MMSegmentation Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
year={2020}
}
```
## License
2020-07-07 20:52:19 +08:00
This project is released under the [Apache 2.0 license](LICENSE).
## OpenMMLab Family
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
2022-11-03 21:16:19 +08:00
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
2021-12-30 17:27:59 +08:00
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab Model Deployment Framework.